
AFIT/GSS/LAS/93D-7

DEMONSTRATION OF IMPROVED SOFTWARE
SUPPORT LABOR ESTIMATION FOR

AIR FORCE OPERATIONAL FLIGHT PROGRAMS
THROUGH FUNCTIONAL ORIENTATION Accesion For

NTIS C R f&'i..... _

THESIS DTIC &IA5

Ronald L. Warner, Jr., Captain, USAF
Darrell L. Wright, Captain, USAF

By S........AFIT/GSS/LAS/93D-7 Dist: ibu:tlon /

Avatdb!lity Coocs
I _ .IAvat; ,,I o-•

Dist Special

Approved for public release; distribution unlimited.

The views expressed in this thesis are those of the authors and do not reflect
the official policy or position of the Department of Defense or the U.S.
Government.

AFIT/GSS/LAS/93D.7

"DEMONSTRATION OF IMEPROVED SOFIWARE

SUPPORT LABOR ESTIMATION FOR

AIR FORCE OPERATIONAL FLIGHT PROGRAMS THROUGH

FUNCTIONAL ORIENTATION

THESIS

Presented to the Faculty

of the School of Logistics and Acquisition Management

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Systems Software Management

Ronald L. Warner, Jr., B.S., M.S. Darrell L. Wright, B.S.

Captain, USAF Captain, USAF

December 1993

Approved for public release; distribution unlimited.

Acknowledgements

We wish to thank our faculty advisors, Mr. Dan Ferens and Lt Col

LaRita Decker, for their feedback and direction during the evolution of our

thesis. Their support helped us discover our own misconceptions and

reorient ourselves back to a productive path.

We also had a great deal of help in trying to obtain historical data

for our thesis. The data we needed was not trivial to find and required

some research. We are grateful to Paul Harbour, Nasser Ismail, James

Peebles, and Jim Roberson for their time and energy in collecting the data

we requested. We also thank all those who we called who weren't able to

directly provide data, but who provided us with more contacts.

Finally, we wish to thank our wives, Pat and Faustina, for their

understanding and support during our year-long effort to complete our

thesis.

Ron Warner

Darrell Wright

I

ii

Table of Contents

Pane

"Acknowledgem ents ii

List of Figures ... vi

List of Tables .. vii

A bstractv iii

I. Introduction .. . 1.1
Chapter Overview 1.1
General Issue 1.1
Typical Effort Prediction Methods 1.4
Specific Problem 1.6
Hypotheses & Objectives 1.10

H ypothesis 1 1.10
H ypothesis 2 1.10

Scope/Limitation of Research 1.11
D efinitions 1.13

Functional Categories 1.13
Block Change Paradigm 1.13
Common Terms 1.15

Research Overview 1.17

II. Literature Review 2.1
Chapter Overview 2.1
Software Support 2.1

D efinition 2.1
Process 2.3

General Software Cost Estimation Theory 2.6
Optim al Tool 2.6
S ize 2.8

* M aintainability 2.15
Productivity 2.19

* Schedule 2.23
Current Support Model Paradigms 2.24
COCOMO Model Description 2.25

Basic Description 2.26
Intermediate Description 2.27
Detailed Description 2.30
COCOMO Support 2.31

iii

Calibration 2.33
COCOMO Strengths 2.36.
COCOMO Weaknesses 2.38
COCOMO & REVIC 2.39

Conclusion 2.40

III. M ethodology .. 3.1
Chapter Overview 3.1
Hypothesis 1 Methodology 3.1

Block Change Model Methodology 3.1
Model Design Process 3.4

S tep 1 3.4
Step 2 3.4
Step 3 3.4
Step 4 3.5

Hypothesis 2 Methodology 3.6
Data Collection 3.6

Model Comparison Methodology 3.8
Data Input Sequence 3.8
Apply Statistics 3.9
Apply Rejection Criteria 3.13

Conclusion 3.14

IV . Findings .. 4.1
Chapter Overview 4.1
Hypothesis 1: Functional Construction of a Software

Estimation M odel 4.1
M odel Design 4.2
Model Design Validation 4.3
M odel Construction 4.6

Choosing a Language 4.6
Refining the Model 4.7
Block Change Size 4.8
Temporal Changes 4.9

Hypothesis 2: Functional Calibration to Improve Model
Accuracy 4.16

D ata ... 4.2 1
Data Collection 4.22
Data Generation 4.23

Dem onstration 4.26
H ypothesis 2 4.26
Hypothesis 1 4.35

iv

Page

REVIC/Prototype Model Comparison 4.40
Conclusion 4.42

V. Conclusions & Recommendations 5.1
Chapter Overview 5.1
D ata 5.1

Conclusions 5.1
Recommendations 5.2

Hypothesis 1: Functional Construction of a Software
Estimation M odel 5.6
Conclusions 5.6
Recommendations 5.7

Hypothesis 2: Functional Calibration to Improve Model
A ccuracy 5.7
Conclusions 5.7
Recommendations 5.8

Future Research Topics 5.10
Sum m ary .. 5.10

Appendix A: Object Oriented Model Notation Summary A. 1

Appendix B: Data Collection Foms B. 1

Appendix C: Prototype Source Code C. 1

Appendix D: Block Change Process Models D. 1
Table of Contents D.2
Object Oriented Design Models D.3
Sacramento ALC Block Change Process D. 13
MIL-HDBK-347 Block Change Process D. 14

Appendix E: Memory and Throughput Relationship Derivation E. 1

Appendix F: Database Contents F. I

Bibliography ... BIB. 1

V ita ... V ITA .1

v

List of Figrs

Figure Page

Figure 2.1 - Support Productivity versus System Age 2.22

Figur 4.1 - Software Support Functional Model 4.3

Flg r 4.2 - PAT Functional Model 4.4

Figur 4.3 - Composite Database 4.28

Figure 4.4 - Normalized Composite Database 4.29

Figur 4.5 - Zoomed and Normalized Composite Database 4.30

Figure 4.6 - Series Block Change Database 4.36

Figure 4.7 - Normalized Series Block Change Database 4.37

Figure 4.8 - Support Data at 6% Added Code 4.38

Figur 4.9 - Memory Utilization Growth 4.38

Figure 4.10 - Learning Effect for Language Experience 4.39

Figure 4.11 - Block Change Adjustment Products 4.40

Figure A.1 - Object Model Notation A.2

FIgumre A.2 - Functional Model Notation A.3

Figum D.1 - Object M odel D. 10

Figure D.2 - Functional Model For Single Block Change Cycle D. 11

Figure D.3 - Functional Model For Block Change Cycle Series D. 12

Figure D.4 - Sacramento ALC Block Change Process D. 13

Figure D.5a- MIL-HDBK-347 Block Change Process D. 14

Figure D.5b - MIL-HDBK.347 Block Change Process D. 15

vi

List of Tables

Table P

Table 2.1 - CPI Values 2.12

Table 2.2 - Reused Code Weightings 2.13

Table 2.3 - Constraints of Memry and Timing 2.18

Table 2.4 - Utilization of'Available Speed and Memory 2.19

Table 2.5 - Learning Effect by Phase 2.21

Table 2.6 - Project Modes for the Basic COCOMO Model 2.27

Table 2.7 - Adjustment Attributes for
Intermediate COCOMO Model 2.29

Table 2.8 - Progranmer Ratings and Effort Multipliers 2.30

Table 2.9 - RELY Rating's 2.32

Table 2.10 - MODP Ratings 2.33

Table 4.1 - Block Change Process Model Compmrison 4.6

Table 4.2 - Calibration Comparison 4.20

Table 4.3 - Actual Data 4.22

Table 4.4 - Input Parameters for Composite Database 4.27

Table 4.5 - Statistical Evaluation of Calibration Source 4.31

Table 4.6 - Statistical Evaluation of Categorical Calibration 4.32

Table 4.7 - Category Calibration Results 4.33

Table 4.8 - Input Parameters for Series Database 4.36

Table 4.9 - Support Model Comparisons 4.41

vii

AFIT/GSSILAS/93D-7

Abstract

This study demonstrated two approaches to improve current

software support effort estimation models for aircraft software. Both

approaches involved a functional orientation not used by existing models.

The first approach demonstrated how to orient a model to reflect the block

change cycle modification process and how to represent support effort

changes over time in order to improve effort estimation accuracy. Current

software models do not reflect the support environment or the temporal

characteristics of aircraft software support. The second approach

demonstrated how to calibrate a model by properly selecting source data in

order to increase accuracy. Support calibration is not addressed by current

models. A literature search affirmed the validity of both approaches and

the methodology. In addition, a standard description of the block change

cycle was developed and validated. A prototype estimation model was

derived from the COCOMO model and included a unique support

calibration. Data was obtained from Air Force Software Support Centers

but was unusable, so data was generated from the prototype for the

demonstration. A method that was developed to compare the prototype

with current models demonstrated that the prototype is an acceptable

model.

viii

DEMONSTRATION OF IMPROVED SOFTWARE

SUPPORT LABOR ESTIMATION FOR

AIR FORCE OPERATIONAL FLIGHT PROGRAMS THROUGH

FUNCTIONAL ORIENTATION

L Introduction

Chapter Overview

This thesis demonstrates methods of improving existing software

support effort estimation models. This chapter begins with the importance

of software support estimation in decision making. We discuss typical

effort estimation methods in current software support estimation models

and the expected accuracies of those models for Air Force software support

projects using the block change process. Next, two hypotheses focus on

objectives for improving the accuracy of software support estimation

models. The scope of the research, definitions of important concepts, and a

brief overview of the remaining chapters complete the Introduction.

General Issue

During any phase of a software project, decision makers must know

the level of effort remaining for the project in order to make valid decisions

(Lederer:51; Bourque:161). Before starting a software project, rational

1.1

decision makers normally weigh the expected benefits against the expected

costs. The assessment of labor hour requirements is key to software

project cost estimates. A good effort estimate must accurately aggregate

the man-months required by specific skills into a total project requirement.

An erroneous effort estimate leads to an erroneous cost estimate which, in

a worst case, will lead to an erroneous start decision.

Once the project is selected, managers allocate resources to the

project based on the cost estimate. This allocation directs how many

people are hired. Without a good effort estimate, managers might hire

extra people and waste money or hire too few people and fall behind

schedule. During the project, managers must know how much effort has

been expended versus how much effort remains in order to decide if their

project is on schedule. Actual labor costs are accumulated and tracked

against the estimated effort. An erroneous effort estimate can lead the

manager to an unrealistic progress assessment.

As explained above, good effort estimation is essential to allow

management to correctly select, staff, and monitor software projects.

However, the pitfalls associated with poor effort estimation are not limited

to the development of the software. Software support managers repeat the

selection, staffing, and monitoring decisions made in development each

time a change is made to the software. The impact of each individual

decision is smaller than during development; however, the support phase

of large software projects has an interesting characteristic. In large

1.2

software projects, 50 - 80% of the life-cycle cost occurs not during the

development phase but during the support phase (after the software

transfers to its operational site) (Banker: 1, DSMC:7- 1). So, in terms of

cost, the support phase is at least as important as the development phase.

Since the effort estimate may determine whether the project will start at

all, managers should consider support effort very early when considering

life cycle cost-benefit trade-offs. When predicting the cost-worthiness of a

large software system, managers should also focus on the support of the

software, not just the development.

In this thesis, we examine how to improve the relationship between

computer software cost models and the software support environment.

Although computer cost models are commonly understood, explaining our

interpretation of software support can avoid confusion. Software support

often is referred to as software maintenance, but this thesis uses the term

software support because "support" avoids the connotation that

maintenance is only corrective (Ferensl:3). Software support encompasses

more than correcting coding errors; it also includes adapting existing code

to interface with new hardware and perfecting code beyond its original

capability (Hager:1638). Thus, the term software support better conveys

"the overall redevelopment aspect of adapting and perfecting software as

well as correcting mistakes.

Another potentially confusing software support term is cost. Cost, a

primary measurement of software support, is typically computed in man-

1.3

months instead of dollars. Man-months quantify the amount of effort

required to complete a task while avoiding time-dependent conversions

(such as inflation) encountered when measuring cost in dollars. Using

man-months does not mean dollar costs are ignored since, given man-

months, estimators can convert to dollars. Man-months are simply easier

to compare among differing projects and times. In this thesis, the terms

cost and effort are synonymous: both describe the number of man-months

needed to accomplish a specified subset of the software life-cycle such as

one block change during the support phase.

Typical Effort Prediction Methods

Software managers use many techniques to predict levels of effort.

The techniques can be grouped into three general methods: asking an

expert, comparing analogous projects, and invoking a software model (van

Genuchten:32). The expert method simply tasks very experienced software

analysts to predict the level of effort. Managers give experts the

requirements of a system, and then the experts wield their experience and

knowledge to forecast the cost of the new system. The analogy method

estimates the cost of a project by comparing the cost of past projects to the

cost of similar future projects. The implementor of this technique adjusts

cost according to differences between the past and future projects. The

last method, using a model, is the least used method (van Genuchten:37).

This method uses mathematics to predict the level of effort for a given set

1.4

of input variables. The model is found by statistically comparing known

project characteristics (inputs) with known project costs (outputs)

(Banker:3). Assuming future costs come from the same statistical process

as the past costs, estimators can find future effort levels from proposed

project characteristics. For example, if given the number of lines of code

and the complexity of a system, a software model, such as the basic

COCOMO model, can output the man-months required to develop the

project (Boehm:57). We will discuss the COCOMO model in Chapter II.

The prime advantages of model estimators are their objectivity

(van Genuchten:40) and usability (Gulezian:235). A model is objective

because it's a mathematical function, and a predefined function is resistant

to bias. Nevertheless, the inputs to any function can be selected in a

manner to bias the final result. While training and experience can help

control this bias (Gulezian:42), models are also helpful because the

required input and the computation process can be programmed into a

software package. Non-experts can then use the software to provide quick

effort predictions and adjustments.

Unfortunately, models also have limitations. The biggest

disadvantage of models is a perceived lack of accuracy. Past predictions of

software cost estimates from computer models indeed have been

inaccurate. A thesis by a previous AFIT student (Ourada: 1.3),

conversations with current software program mangers, and our personal

1.5

experience ccnfirm the poor performance of existing software cost

estimation models.

Currently, the Air Force Cost Analysis Agency recommends four

computer models for estimating software support efforts: 1) the Software

Architecture Sizing and Estimating Tool (SASET), 2) the Software

Evaluation and Estimation of Resources Software Estimating Model

(SEER-SEM), 3) the PRICE-SL Software Estimating Model, and 4) the

Revised Intermediate Constructive Cost Model (REVIC) (Mosemann:2).

Each model employs statistical techniques to predict future software effort

based on past efforts. The predictive capability of these models stems from

the assumption that all the data from past projects come from very similar

processes. However, the software engineering processes along with the

historical data from those processes have constantly changed. Using

historical data from changing processes yields computer models which

predict with high amounts of variability. This high variability

theoretically reduces the expected accuracy of a model's point estimation of

effort. Any technique that can reduce the variability of a model's

prediction can potentially increase the accuracy of the model's prediction.

Specific Problen

Before addressing how to increase model accuracy, the process by

which computer models currently estimate effort should be addressed. All

software support effort estimates from computer models lie on a continuum

1.6

between two opposing methods, parametric (top-down) and detailed

(bottom-up) (Stewart:464). The heart of the parametric method is a model

formed from correlating a measurable set of software characteristics to

known levels of effort. Models based on the parametric method use the

correlations to predict future efforts. Most current software support

models tend to employ the parametric method.

The detailed method breaks down a large, complex process into

small, simple steps and then sums an estimate of each simple step to

predict the effort of the whole process. Each step should be small enough

and simple enough to permit a quick, straightforward effort estimate of

that step.

Estimation models need not use the parametric or detailed methods

exclusively; models can combine both methods. A model could divide a

process into a few large subprocesses, estimate each of these subprocesses

by historical correlation (parametrically), and then sum the results. For

example, REVIC, SASET, and SEER divide the life cycle of software into

two parts, initial development and post deployment support. Each of these

models uses a parametric model for development estimation and a slightly

different parametric model for support estimation. The use of two models

to estimate the software life cycle cost makes REVIC, SASET, and SEER

more detailed than a single parametric model used to describe total

software life cycle cost. However, the support phase estimates of REVIC,

SASET, and SEER are purely parametric.

1.7

Armed with a basic understanding of the estimation process, we now

discuss how to make the models more accurate. We propose that

predictive accuracy of the software support models can be increased by

functionally orienting the models to reduce the prediction variability

introduced by the model. Functional orientation means adapting a model

to better represent the function(s) of the software and/or the software

support process. This functional orientation will be demonstrated in two

ways, one for each type of estimation method.

The first way to functionally orient a model is to push towards the

detailed end of the estimation continuum. The idea is to alter the support

model to reflect the actual software support process. We altered the

COCOMO model in a way which better reflects the actual process of

software support used by the Air Force called the block change process.

(The block change process is discussed in detail in the Definitions section

later in this chapter.) Selecting the COCOMO model was the result of two

considerations. First, REVIC, a model on the list of Air Force

recommended models, was derived from COCOMO. Second, COCOMO

was a well understood and popular non-proprietary model with good

documentation. Therefore, we selected a baseline model familiar to Air

Force estimators, thoroughly researched the baseline model, legally

modified it, and then verified the modifications. Altering the COCOMO

model encompassed consolidating the published regulations and common

practices of the Air Force Materiel Command that described the block

1.8

change process. With a simple model of the block change process in hand,

the next step was to adapt this process model to a COCOMO mathematical

model to produce better predictions.

The second way to functionally orient a model is to keep the model

on the parametric side of the estimation continuum but to limit the scope

of the parametric correlation. The idea is to simply calibrate a model to a

single functional area. The broadest functional area examined was aircraft

operational flight programs (OFPs). We further divided OFP software into

five functional categories: communication/identification, navigation

sensors, core avionics, electronic combat, and offensive sensors. This

calibration technique closely follows what many software experts advise -

to calibrate the model to the local environment (Boehm:524; Thibodeau:6-

6). Since the term local environment is poorly defined, this thesis

interpreted local environment as a group of software programs that are

functionally related. This interpretation avoided the connotation of

environment as a local geographic location. Models calibrated to any of

these subareas should predict better than models calibrated to aircraft

OFPs or to models calibrated to all types of Air Force software. Both

estimating approaches, functional calibration for parametric models and

functional adaptation of more detailed models, reflect the basic engineering

tenet that form follows function. We adapted this tenet to the software

support estimation problem.

1.9

Hypotheses & Objectives

The research hypotheses and objectives are centered around the

inflight software used aboard current Air Force aircraft. The aircraft are

restricted to those with combat missions since combat aircraft have the

greatest variety of software types.

Hypothesis 1. The functional, bottom-up construction of a software

effort estimation model will increase the predictive accuracy of that model.

The objectives are to

1) model the current block change functional process with simple,
small steps.

2) program these steps into a computer model based upon
COCOMO.

3) demonstrate the improved accuracy of bottom-up modeling.
4) find specific recommendations to tailor existing models for

functional adaptation.

Hypothesis 2'. The functional, top-down calibration of a

statistically-based software effort estimation model will improve the

predictive accuracy of that model. The objectives are to

1) demonstrate the improved accuracy of functionally calibrating
cost models.

2) find specific tailoring recommendations to improve the accuracy
of cost models.

The acceptance or rejection of these hypotheses will not be conclusive, but

they should help p~oint the proper direction for improved software support

cost estimation.

Data limitations hindered assessment of this hypothesis. However, each objective is addressed to the extent

possible.

1.10

SaopeLinmitation of Research

Our research focused on estimating the main component of software

support costs, man-months of effort, and not on auxiliary support costs

such as facilities or hardware. These auxiliary costs are better addressed

outside effort estimation models. Also, estimates for man-months of effort

on such tasks as technical order changes and flight tests may vary

between block changes and accuracy may vary accordingly. However, the

proposed changes should increase accuracy over current models.

Evaluating the hypotheses required obtaining data from a

sequential series of block changes on two different operational flight

programs from each functional category. A time series of actual data could

then be used to simulate an entire software support lifecycle to test the

predictive accuracy of all the models for the entire software support phase

with multiple block changes. Both time series and individual block change

effort data could be used to calibrate the models and used to test the

predictive accuracy of all the models for a single block change effort.

The minimum set of data sought for each block change was the

number of lines of code changed, the time length of the block change, the

effort duration in man-months, and a description of the code function.

Other information, such as available memory and throughput, could fulfill

a particular model's variable set. Most of the models require these

additional variable values to fine tune the estimate; otherwise, default

values must be used. Once entered, these additional variables were to be

1.11

held constant, except in the case of available memory and throughput.

Unfortunately, acceptable size data was not available. The impact of this

data unavailability is discussed in Chapters III and IV.
"4.

The data search was limited to combat aircraft (F- 111, F- 15, F- 16,

B-I, B-52, E-3, AC-130) that had an established software support history.

These aircraft also had subsystems from many of the functional categories.

Our search narrowed to these specific aircraft to focus on aircraft that

were likely to have the data we needed. Although we expected few

complete data sets to exist, we did expected to find, at a minimum, enough

data to determine if we were pointed in the proper direction.

Narrowing the data search to specific aircraft was consistent with

the focus of this thesis. After identifying a set of Air Force software that

was functionally different than other types of Air Force software, we

further divided that set, again based on function, into subsets. This thesis

is a first cut at improving software support estimation. Future research

still needs to be done once actual data becomes available to confirm the

findings and to determine at what level of subdivision the proposed

methods cease to work. This work provides few resolute answers but,

instead, serves as a catalyst for future research.

1.12

Definitiions

Functional Categories.

1) Core Avionics (Fire Control Computer, Stores Management,

Display Generation) that are usually purchased from the airframe

contractor as Contractor Furnished Equipment.

2) Offensive Sensors (Fire-Control Radar, Infrared Search Track

sets, LANTIRN Targeting Pod, PAVE PENNY Pod, PAVE TAC Pod,

AWACs radar, JOINT STARS radar) that may be internal or external to

the airframe.

3) Communication/Identification Systems (HAVE QUICK, HAVE

SYNCH, VHF, UHF, IFF, Integrated Air Data Modem, etc.) that are

common across many aircraft types.

4) Electronic Combat Systems (Radar Warning Receivers,

Chaff/Flare Dispensers, Electronic Jamming Systems, Missile Warning

Systems, etc.) that are added to the aircraft for self protection.

5) Navigation Sensors (Global Positioning System, Inertial

Navigation units, LANTIRN Navigation Pods, Terrain Following Radar,

Microwave Landing System) that are used for precision navigation.

Block Change Paradigm. The software support lifecycle consists of a

periodic series of redevelopment blocks as governed by DoD-STD-2167A

and described by MIL-HDBK-347. These blocks may overlap or be

separated in time and have the following characteristics:

1.13

1) Each block encompasses a mixture of support categories

(maintenance, optimization, adaptation, new capability).

2) Each block may have a fixed interval, duration, budget, or

manning level.

3) Each block is either organic (Air Force) or contractor logistic

support (CLS) or a mix of both.

4) Each block requires access to non-aircraft facilities for

development and test.

5) Facility costs (development and support) are part of the life-cycle

cost and are not part of any particular block change cost.

6) Facility needs are similar within functions and different between

functions.

7) Flight test costs for non-core avionics are budgeted by the

aircraft and are not part of the change cost.

8) Change efficiency may be different for each block change.

9) Total effort per block change is a function of

a) number of lines to be changed
b) number of lines to be added
c) number of lines to be deleted
d) change complexity
e) available memory and throughput
f) organization efficiency
g) organization experience and skill level
h) organization resources
i) schedule
j) documentation

1.14

The actual process used when a new block change is produced is

very similar to the development of new software. The biggest difference

between a new development and a single cycle of the block change stems

from the starting point and the requirements maturity. A block change

starting point is an established software baseline. The starting point for a

new development is a requirements document. The requirements for the

block change are problem reports and change requests based on the actual

performance of the software configuration and inherently different than

the more abstract requirements that document new development uses.

These differences between a new development and a single block

change result in an additional process at the start of each block change.

In this process the block change requirements (problem reports and change

requests) are reviewed, prioritized, and approved by the Configuration

Control Board (CCB) for incorporation into the software baseline. From

that point on, the support process is similar to a development effort. The

requirements are mapped into the baseline software, coded, tested, and

then released. After release, the process may begin again.

Ccnmmn Temnis.

1) Operational Flight Program (OFP): Software written for an

airborne computer requiring real-time processing, interaction with other

aircraft computers, and fault tolerance.

1.15

2) Lines of Code (LOG): Each OFP source instruction changed,

added, or deleted in the software update. This should be counted in a

before and after comparison.

3) Software Support Activity (SSA): the DoD or military service

organization responsible for the software support of designated computer

software.

4) Software Support Product (SSP): A single, fully developed,

tesied, documented, and supportable computer instruction set replicated in

sufficient quantities and delivered to the installation point (excluding the

original development). Under the block change process, SSP is usually

completed on a periodic basis.

5) Block Change Cost Estimate: Estimation of all costs associated

with the production and delivery of a single software support product.

6) Software Support Life Cycle Cost Estimate: Estimation of all

costs associated with the production of all software support products for a

specific computer.

7) Software Support Estimate: Estimation of all costs associated

with the production of a single support product.

8) Bottom-Up Cost Estimate (detailed): Estimation method where

the project is broken into a number of smaller tasks. Each task is

estimated independently by analogy, by parametric model, or by bestV

engineering judgement, and the results are summed for a project estimate.

1.16

9) Top-Down Cost Estimate (parametric): Estimation method where

the project is estimated without significant subdivision of the tasks. The

common methods of Top-Down estimation include analogy and parametric

models.

10) Configuration Control Board (CCB): An organization composed

of representatives from the SSA and software users that approves changes

to the configuration of designated computer software.

Research Overview

Chapter II presents a review of available literature, regulations, and

operating instructions pertaining to the Block Change Process and current

methods used by Air Force organizations to estimate support costs. The

next chapter also reviews available literature and model manuals to

examine the paradigm that existing software cost estimation models use to

estimate support costs and to examine alternatives to existing cost models.

Interviews supplement the literature as needed. Chapter III addresses the

methodology used to build and evaluate the models and the collection and

analysis of the data. Chapter IV is devoted to findings while Chapter V

contains our conclusions and recommendations.

1.17

II. Literature Review

Chapter Overview

The track record of cost models to accurately predict software

support cost is disappointing. In a 1980 study sponsored by the Air Force,

the Hughes Aircraft Company found that none of the current cost models

fulfilled the requirement for estimating avionics embedded software

support costs (Wainal:27). In 1991, Ferens concluded that none of the

eight cost models he examined were shown to be quantitatively valid

(Ferensl: 11). Clearly, there is room for improvement in software support

cost estimating models.

Before improvement can be made, a comprehensive understanding of

the software support cost estimation problem is needed. This literature

review investigates four areas: software support definition and process,

general software cost estimation theory, current support model paradigms,

and the COCOMO/REVIC software cost model. Each of these areas form a

cornerstone to building better software support estimation models. The

results of the literature review are presented in this chapter.

Software Support

Definition. The most relevant definition of software support comes

from the Defense Systems Management College Mission Critical Resources

Management Guide. The term for software support used in the Guide is

2.1

Post Deployment Software Support (PDSS) which has been defined by the

Joint Logistics Chiefs (JLC).

Post Deployment Software Support is the sum of all activities
required to ensure that, during the production/deployment phase of
a mission critical computer system's life, the implemented and
fielded software/system continues to support its original operational
mission and subsequent mission modifications and production
improvement efforts. (DSMC:7-5)

Military Handbook 347, Mission Critical Computer Resources Software

Support, defines PDSS as

Those software support activities that occur during the full-rate
production and initial deployment and operations support phases of
the acquisition process. (DOD2:8)

Both definitions are compatible with the software support definition

proposed in Chapter I. Software support is corrective, adaptive, or

perfective. The JLC definition makes additional allowance for changes due

to mission modifications. These changes are adaptive under the definition

scheme used in this research.

Barry Boehm espouses the corrective, adaptive, and perfective

categories to define support (Boehm:536). On the other hand, John

Reutter divides support into seven categories: emergency repairs,

corrective coding, upgrades, changes in conditions, growth, enhancements,

and support (DSMC:7-6). The seven categories may provide a more

descriptive categorization of the work, and further investigation may prove

one categorization better than the other, but such investigation becomes

an academic argument. The JLC definition succinctly shows the

2.2

overriding issue: software support is the effort required to make the

software system continue to work after it is fielded in spite of mission

and/or hardware changes. How software support is categorized, except for

occurring before or after fielding, is generally irrelevant to the task of

estimating the cost of the effort. Once the software has been fielded, any

changes that follow are support changes no matter what other

categorization is used.

Process. The usual process for making DOD software support

changes is referred to as the "block change". Under this concept, a number

of changes are made during one time span and then they are all released

simultaneously (Ferens3:65). In 1980, the Avionics Laboratory of the

Wright Aeronautical Laboratories sponsored the Hughes Aircraft Company

to investigate the block change process for aircraft Operational Flight

Programs (OFPs) as part of the Predictive Software Cost Model

development (Waina 2). Hughes documented the support process for the

A-7, F-111, F-16, F-15, various Electronic Combat (EC) equipment, and

various pieces of Automated Test Equipment (ATE). The process described

showed minor iifferences in detail from aircraft to aircraft and are typified

by the F- 16 process.

The F- 16 block change process, according to the Hughes report,

begins by collecting reports of computer program deficiencies and

descriptions of new capabilities. The support organization then prepares

preliminary Engineering Change Proposals (ECPs) for each potential

2.3

change. Next, feasibility studies and engineering tests are conducted to

better define the change, and the results are presented at a Technical

Conference (TC). Members of the TC establish priorities, revise the

Preliminary ECPs as necessary, and obtain user approval. In the

subsequent step, software requirements are formulated and then reviewed

in a Preliminary Design Review (PDR). Programming and checkout occur

in the next step culminating in a Critical Design Review (CDR). After

CDR, the revised OFP is incrementally tested ending with flight test. The

support organization performs Functional and Physical Configuration

Audits at the end of the test phase. The software then goes through a

Validation and Verification (V & V) process ending with the release of the

software to the field (Waina2:344-345). It is interesting to note that the

block change process documented in the Hughes report has changed little

during the past 10 years.

Several changes in Air Force software regulations have occurred

since the Hughes report was written, most notably the introduction of

DoD-STD-2167 in 1985 followed by DoD-STD-2167A and -2168 in 1988

All of these standards affect the software documentation, configuration

management, and quality programs of the software developer and the

support organization. DoD-STD-2167A also requires the CDR before

coding and adds a Test Readiness Review before testing (DOD 1:10).

Other process changes are documented in MIL-HDBK-347. This

handbook initiates the PDSS process with the submittal of a

2.4

problem/change request and then sequences four major phases: initial

analysis, software development, system integration and testing, and lastly

product logistics (DOD2:25). Spanning these phases is the continuous

activity of support operations and maintenance. The final product of the

process is a delivery package.

A more detailed description of the PDSS process would label the

problem/change report as the name applied to any form that reports

software problems or proposes software enhancements. For each report

during the initial analysis phases, the software support activity (SSA)

collects all necessary decision-making information including change

classification, impact analysis, estimated effort, and risk identification.

The Configuration Control Board (CCB) then examines this initial analysis

and decides if the proposed changes should be implemented. The

development phase accepts the initial analysis as a starting requirement

and proceeds to develop the change until the modified software is ready for

testing. During system integration and test, the SSA incrementally tests

the system until the software performs acceptably on real-time hardware

in a realistic operational environment. Faults are identified, isolated, and

then corrected throughout testing. Finally, the SSA reproduces and

verifies the final delivery packages, delivers them to the users, trains the

y users on the new changes, and may even install and check out the updated

software. Throughout the entire PDSS process, support operations and

2.5

maintenance activities provide the overhead structure necessary to keep

the SSA functioning smoothly.

It is interesting to note that the processes described by Hughes,

DoD-STD-2167A, and MIL-HDBK-347 differ in only minor degrees.

Although the PDSS process may require a few unique activities such as

final package delivery and training, all the above processes are more

similar than dissimilar. The support process descriptions demonstrate

that the phrase "re-development" is an apt label for the PDSS cornerstone

of the software support estimation. In fact, MIL-HDBK-347 explicitly cites

the PDSS software development phase as following a DoD-STD-2167A

development cycle (DOD2:25).

General Software Cost Estimation Theory

To aid understanding of the second cornerstone of software support

estimation, general software cost estimation theory, an optimal software

support estimation tool based on the available literature was synthesized.

The first step was to define the characteristics of an optimal tool and

identify what parameters were necessary for the tool to estimate effort

accurately. The next step was to investigate the parameters themselves to

understand their expected behavior over time and to understand their

interactions with each other. The following section reviews the results.

Optimal Tool. An ideal software estimation tool would accept some

number of known block change efforts along with their production

2.6

characteristics and would contain a regression relationship that could be

used to predict future efforts. The production characteristics would be

easily observable and would have been recorded along with the original

data. The most likely factors to be correlated are magnitude of effort

(expressed in man-months) and the size of the product (expressed in LOC).

Given a set of expected lines of code and production characteristics, the

tool could find an estimate of the effort required. Any variations in man-

hours between projects of the same size are due in part to the differences

in the situation under which the effort is accomplished (its production

characteristics). A better tool reduces these variations by adjusting for the

production characteristics. If possible, the tool should divide the variation

sources into mutually exclusive categories. Otherwise, if covariance exists

between variation sources, the tool must perform additional calculations.

The number of potential production characteristics is enormous so

some reasonable limit must be found. What is the minimum set of data

needed to build a model? Given the definition and process of software

support, any software support cost estimation tool needs to account for at

least the following parameters:

1) the magnitude of the software change (size).
2) the ease of altering the software (maintainability).
3) the organizational efficiency of changing software (productivity).
4) the time allowed for the change (schedule).

These parameters are not independent. Some dependencies are

intuitive. For example, schedule may impact size (management may

2.7

reduce the scope) if the estimate shows the work can't be done within the

schedule. Productivity should increase for easily maintainable software.

Other interdependencies emerged from the literature as well.

Furthermore, the first three parameters can be divided into a number of

factors that should be addressed separately. These factors as well as the

parameter interdependencies are discussed below.

Size. Since size is the primary cost driver for software projects

(Boehm:58), size is often the starting point of a software cost model.

Mukhopadhyay and his associates assert that "A fundamental problem of

software estimation is the determination of software size"

(Mukhopadhyay: 156). While Boehm refers to "Annual Change Traffic" as

being equivalent to development product size, he says little about how to

derive it (Boehm:536). For software support changes, the change needs to

be expressed in some term of size that accounts for the number of lines of

software to be changed. Software size is normally expressed as Lines Of

Code (LOC), Source Lines Of Code (SLOC), or Deliverable Source

Instructions (DSI). All three units basically refer to a single line of code as

might be seen on a code printout.

After a line size unit is identified, a choice of which lines to count or

not to count is needed to further define size. Low and Jeffery list five

counting variations: 1) count only new lines; 2) count new lines and

changed lines; 3) count new lines, changed lines, and reused lines; 4) count

2.8

all delivered lines plus temporary scaffold code; and 5) count all delivered

lines, temporary code, and support code' (Low:64).

Of these five variations, variation 2 is preferred since it best

captures only what was changed from the baseline to the final block

change product with the exception that this variation does not account for

deleted lines. Variation 1 gives a count of zero if no new lines were added.

Variation 3 captures one complexity facet but counts more than what was

changed. Counting reused lines can capture the added complexity of

designing and checking for potential problems in a large program.

However, this same complexity facet can be captured by calibrating the

model to similar sized programs. Variations 4 and 5 not only count more

than what was changed, but they also require extra code counts to capture

the size of temporary development code. Temporary development code is

not part of the baseline and is not delivered. Once past the sizing units

and line selection, an estimate of the size of the change is still needed.

According to current literature, there are three general methods of

deriving size which are available to the estimator. The first method is

analogy in which a similar effort of known size is selected and its size

becomes the estimate (Reifer: 159). The second method is expert analysis

where an expert estimates the size of the effort based on previous

experience (Reifer: 159,160). The third method, Function Point analysis, is

I Support code used in this context is code which supports development (such as stubs, drivers, or tests) and

not code which is produced during the support phase.

2.9

a process that uses software functions to predict size and complexity

(Reifer: 159). All three of these methods typically have been applied to

estimating development software size. However, software support sizing

can have unique differences that might not exist during development size

estimoting."•

Once a software product enters support, three changes can occur to

the baseline code. Lines of code can be added, modified, or deleted. Size

measurements historically have focused on the original development size

by creating new code where none previously existed. However, software

support does not always develop completely new requirements and a code

sizing technique for support is needed for code modification and deletion

activities. Two techniques that consider size for changes other than new

code were found in the literature.

The first technique addresses code modification and comes from

Boehm's conversion cost estimating relationship (Boehm:558). For this

research, converting old code to a new application is tantamount to

modifying code within an existing application. The equivalent delivered

source instructions (EDSI) for a number of adapted DSI (ADS)) is found by

multiplying the latter by a conversion adjustment factor (CAF) (see

equation 2. 1).

2.10

EDSI=(ADSI) -4A Eq. 2.1
100

where EDSI = equivalent delivered source instructions
ADSI = adapted delivered source instructions
CAF = conversion adjustment factor

The CAF can be viewed as a percentage fraction of the adapted (modified)

code size and is the sum of two parts, the adaptation adjustment factor

(AAF) and the conversion planning increment (CPI). The AAF is found by

calculating a weighted average of the percentages of design modified (DM),

code modified (CM), and integration required for modified software (lM)

(see equation 2.2).

AAF=0.40(DM)+0.30(CM)+0.30(IMJ Eq. 2.2

where AAF = adaptation adjustment factor
DM = % design modified
CM = % code modified
IM = % integration for modified software

Boehm selected weightings based upon a general average fraction of effort

devoted to design, code, and integration/test (Boehm: 137). The CPI value

is found by using a simple table developed by Boehm. The table is shown

in Table 2.1.

2.11

Table 2.1

CPI Values (Boehm:558)

CPIValue Level of Conversion Analysis and Planning

0 None

1 Simple conversion schedule, acceptance plan

2 Detailed conversion schedule, test and acceptance plans

3 Add basic analysis of existing inventory of code and data

4 Add detailed inventory, basic documentation of existing system

5 Add detailed inventory, detailed documentation of existing system

As mentioned earlier, CAF = AAF + CPI. Using this relationship and

substituting equation 2.2 for AAF, a more detailed form of the EDSI

equation is derived (equation 2.3) as shown below.

EDSJ=(ADSI) (0.40 *DM+0.30 *CM+0.30 *IM) Eq. 2.3100

where EDSI = equivalent delivered source instructions
ADSI = adapted delivered source instructions
DM = % design modified
CM = % code modified
IM = % integration for modified software
CPI = conversion planning increment

Once computed, an EDSI can be substituted in cost model equations in

place of a pure development DSI measure.

The second technique that sizes code other than new code comes

from Reifer Consultants in their manual for SoftCost-R (Kane:R-83). This

sizing model differentiates among five categories for a support line of code.

2.12

A line can be new, added, deleted, modified, or retested. The model also

distinguishes between actions that occur upon a single LOC and those

within a module of code. Besides differentiating between lines and

modules, there are two subtle differences between Low and Jeffery's

change categories (page 2.9) and those proposed by SoftCost-R. The first is

a category to count code that is not changed but is retested during the

block change process. The second difference is a splitting of the added

category based on the source of the added line. The SoftCost-R new

category represents a line created from scratch for the block change while

the added category represents a line created for some other program that

is added (reused) as part of the block change. The equivalent size is the

sum of the size of new code plus the size of reused code (see equation 2.4).

Equivalentss =Newsi, +Reusedsj, Eq. 2.4

Each size category is weighted as shown in Table 2.2.

Table 2.2

Reused Code Weightings (Kane:R-83)

Percent Weight Type of Reused Code

27 Modified Modules

15 Deleted Lines

53 Added Lines

24 Changed Lines

11 Deleted Modules

17 Retested Modules

2.13

Reifer includes a set of assumptions for e- .h of the five categories to allow

estimators to properly categorize changed lines (Kane:R-84). The

assumptions are listed below:

"* New code will be developed according to a well-defined process and set
of product standards, including those for documentation.

"* Reused code may not necessarily have been developed according to the
well-defined process and products standards. Its documentation may or
may not be up-to-date.

"* Reused code will be identified during the preliminary design phase so
that code added, deleted, and/or changed within units will go through
all subsequent life cycle activities.

"* Deleted lines require reduced design, coding, and documentation effort,
and no testing of the deleted lines.

"* Changed code will take the same implementation effort (i.e., detailed
design, coding, and unit testing) as new code in proportion, but with
less documentation and testing.

"* Reused code will not include code added, deleted, or modified in any
other way.

"* Retested, unmodified code will require revalidation of the interface
design and retesting activities only.

"* All modified and reused code will be completely retested and requalified
prior to integration into the system.

The total of the reused code is the weighted sum of all the

appropriate code types as shown in Table 2.2. The following equation is

the complete expansion of equation 2.4 according to Table 2.2.

SizeE t&=New•, +[(.27ModifiedM.Udt) +(.15DeletedLs)
+(.53Addedu,•)+(.24Changedu,•) Eq. 2.5
+(. 11Deletedmok,j) +(. 17Retesedmu•k)]

Each part of the equation should be expressed in the same units.

Generally this will be LOC, although it could be a percentage of the total

code. Equation 2.5 shows that added LOCs are weighted less than new

LOCs. In addition, since the weightings total more than 1.0, this equation

2.14

allows a highly modified portion of code to cost more than functionally

equivalent code developed from scratch.

This literature review on size has shown that any size estimate

involves selecting units, an appropriate set of LOCs, and an overall sizing

methodology. For a support size estimate, Boehm's conversion relationship

and Reifer's sizing model were presented as tools that can account for size

other than new code. The major point to be made about size estimation is

that better size estimates produce better cost estimates. Reifer states

"Because most of the popular software cost estimating models in use today

are extremely sensitive to size inputs, there is a direct correlation between

improving the capability to predict both size and cost" (Reifer: 159).

Therefore, size estimation should provide the foundation of the estimate

and the remaining parameters of maintainability, productivity, and

schedule should be used to fine tune the estimate. The next subsections

address these remaining three parameters.

Maintainability. Maintainability is a design feature of the software,

its documentation, and its environment. The design sets the structure of

the code under which support programmers can alter and maintain the

code. The documentation communicates this structure and the software

environment bounds the programmer's freedom to alter the code.

Therefore, these three characteristics affect maintainability and help

determine if the software itself has been designed to allow easy

modification or if the software documentation understandable and current.

2.15

It is easy to underestimate the effect of documentation on support effort,

but according to Robson and his coauthors, "50-90% of maintenance time is

devoted to program comprehension" (Robson:79). The authors go on to

state that comprehension can be affected by the design of the software, the

style in which the software was written, the convention followed when

naming • ariables in the software, the presence of indentation and the

number of spaces used in the format of the software, and the presence of

comments to explain the software (Robson:80,81).

Robson and his coauthors also discuss automated systems that have

been developed to help the maintainer better understand the software but

drew no conclusions on the usefulness of those systems (Robson:80-83).

However, there is an interdependency between the maintainability

parameter and the productivity parameter. Does the maintenance

organization have and use such automated systems? If so, what is the

effect on productivity? Answers to these questions need to be obtained to

properly tune the effort predicted from size alone. The discussion so far

has dealt with the software itself and has excluded the documentation of

the software. The documentation presents other potential pitfalls wilich

are discussed in the following paragraphs.

Documentation must not only be understandable it must be precise

enough to prevent misunderstanding. Cioch states

In practice, when one wishes to ascertain the understandability of a
particular software-related product, one is often concerned not only
with the degree to which, or the ease with which, the information is

2.16

grasped mentally, but also the degree to which it is misinterpreted

by the person examining the product. (Cioch:85)

He suggests that misinterpretations are more dangerous than lack of

comprehension. Misinterpretation is harder to detect and can cause

unintentional changes to the specification which result in software that

doesn't match what the user expects. When misinterpretation mistakes go

unnoticed in the current change, they must be fixed later (Cioch:86).

Another possible constraint on maintainability is the hardware

environment where the software resides. In real-time environments such

as avionics, software is especially susceptible to memory and throughput

constraints imposed by hardware. As the operating memory available

decreases, programs have less room to expand for corrections or

enhancements. This lack of room forces support programmers to write

more size-efficient code and increases the effort needed to write the code.

Throughput responds similarly. As the available throughput of software

decreases, programs have less time to manipulate data and communicate

with other programs. This restricted ability also forces support

programmers to write more efficient real-time code in terms of throughput

(or timing). Again the effort required increases. In a continuation of the

Hughes study of the Predictive Software Cost Model, SYSCON quantified

these effects for several different support phases (see Table 2.3). In Table

2.3, the timing fill is equivalent to throughput.

2.17

Table 2.3

Constraints of Memory and Timing (SYSCON:33)

Support Phase % Memory Fill % Timing Fill

Requirements Review 1.42X m 1.33X'24

Design 2.00X'5° 1.82X130

Development 1.88X' 3 1.82X 1 31

Integration 1.59X 978 1.55X 904

Test & Evaluation 1.32X W7 1.39X "

Documentation 1.13X -'7 1.09X1,1

Reproduction/Installation 1.04X o0 1.04X 14

For both restrictions, the equations apply only if the percentage is greater

than or equal to 75%. SYSCON determined that lower percentages had no

effect on cost (SYSCON:41).

The PRICE-S model describes the effects of available speed (time)

and memory utilization as one relationship (see Table 2.4). This model

shows that the speed and memory constraints have a much greater effect

on cost than on schedule. In Table 2.4, normalized costs greater than 1.00

represent an effort increase beyond that for an unconstrained effort.

Utilization ratios less than 0.50 have no effect on cost.

2. 18

Table 2.4

Utilization of Available Speed and Memory (Boehm:516)

Utilization Normalized Cost Normalized Schedule

0.50 1.00 1.00

0.60 1.08 1.00

0.70 1.21 1.00

0.80 1.47 1.05

0.85 1.73 1.10

0.90 2.25 1.18

0.95 3.78 1.35

Productivity. Following maintainability, the second major

parameter need-d to fine tune an effort estimate is productivity.

Productivity is the measure of an organization's efficiency of converting a

conceptual change into reality. The less time and resources required, the

more efficient the organization. Normal organizational inefficiency takes

the first bite out of productivity. Fried states

People in 4ormally organized groups cannot be productive 100% of
the time for extended periods. According to general overhead
estimates, in the average organization, at least 25% of employee
time is required for vacations, sick leave, personal time off, training,
coffee breaks, and administrative and organizational meetings. In
addition, 10% of employee time (a conservative estimate) is
nonproductive because of late completion of activities on which the
employee depends, poor work scheduling, personal conversation, and
other forms of idle time. (Fried:28)

There are a number of conceptual factors that affect productivity of

an organization engaged in software maintenance. Obvious factors which

affect Air Force SSAs include the experience level of both management and

2. 19

maintainers, maturity of the maintenance process, software engineering

practices and methods, familiarity with the software being modified, and

resources available (computer time, specialized software tools, etc.).

Banker, Datar, and Kemerer cite over 100 variables to explain productivity

(Banker: 1). However, their productivity model uses only five variables: the

ability of the project team members, the level of previous experience with

the application, the use of structured analysis and design software

methodology, the level of hardware response time, and the operational

quality of the resulting system (Banker:6). The last variable is not used to

predict productivity but rather to determine the quality of the products

produced. The obvious factors affecting Air Force SSAs listed earlier in

this paragraph have only one element in addition to Banker's model. This

conceptual agreement is very good considering Banker's model is a

research tool used to measure the productivity of software maintainers

working for a commercial bank. Even though the applications and

language used for business are not what would be used in Air Force

weapon systems, the models suggest that a small set of variables might be

used to estimate productivity.

A benefit of successive block changes for software supporters is the

built-in educational experience that occurs through those successive block

changes. SYSCON quantified this relationship for different support

phases (see Table 2.5) and reported that the maximum time of this effect

is six years (SYSCON:44). At the end of six years, the supporters should

2.20

have learned the maximum amount from the original code. This

relationship assumes that the software supporters are not the same

programmers who developed the software.

Table 2.5

Leaming Effect by Phase (SYSCON:33)

Support Phase Years of Support

Requirements Review 1.61X 361

Design 1.64X- 375

Development 1.65X 374

Integration 1.65X 374

Test & Evaluation 1.58X 33o

Documentation 1.43X -8

Reproduction/Installation 1.1 9X 374

Symons confirms this initial productivity increase in his description

of DuPont's support productivity versus system age (Symons: 149).

DuPont's productivity improved from about 1.5 work-hours per function

point to about 0.25 work-hours per function point' in the span of about 3

years. However, after those initial three years, the productivity slowly

decreased to near 1.0 work-hour per function point during the next 15

years. As plotted in Figure 2.1, these two trends exhibit a classic "bath-

tub" shape, an initial decrease in required effort (increase in productivity)

followed by a steady effort increase (decreasing productivity) for the

A function point is another sizing method. In this case. one function point can be considered proportional

to one line of code. (See Symons for more information on function points).

2.21

remaining support life span (Symons: 150). Symons attributes the slow

rise in required effort to technical deterioration because the original

pristine design becomes degraded from constant maintenance and

enhancement (Symons: 150).

2-5

2

\.5
Productivity

0.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 S 17 18

Age of System (years)

Figure 2.1 - Support Productivity versus System Age (Symons: 149)

Lehner also describes this bath-tub phenomenon as an initial 3-year

decrease in the corrective portion of maintenance from about 25% to 15%

followed by a slower but steady 9-year increase up to 45% (Lehner: 135).

Lehner points out that this behavior is more prevalent within

environments where the requirements are constantly changing, and less

prevalent where the requirements are static (Lehner: 137).

A third observer of design deterioration is Yuen. He confirms

decreasing productivity with age in his evolution dynamics report. He

2.22

states that "the original structure of a piece of large software is inevitably

corrupted each time the software is modified" (Yuen: 160).

9Scedule. The last major fine tuning parameter, behind

maintainability and productivity, is schedule. This variable strongly

interacts with productivity. Fried espouses that schedule is a balance of

costs. Shortening or lengthening a schedule almost always increases the

cost. Lengthening a schedule also delays the benefit of a new system

(Fried:28). Fried argues that schedule should be driven by team size

because each member in a programming group must spend some time

communicating and interacting with others in the group (Fried:28). Thus,

an excessively large group requires an excessive amount of communication.

According to Fried, the formula for computing the number of possible

interactions (1) between a group of K people is given in equation 2.6.

I= K(K-1) Eq. 2.6
2

where I = number of possible interactions

K = number of people in a group

Fried then uses the equation in an example of 90 people working a

standard 40 hour work week. Out of 3,600 available hours, only 538 are

productive. This is independent of how the 90 people are organized

(Fried:28-29). Groups of 10 people or less are the most productive while

larger groups spend more time communicating for each additional team

member (Fried:29). Fried suggests that using proper tools and modern

2.23

programming techniques reduces the number and length of

communications (Fried:35).

The support schedule, whether driven by team size or management

dictate, combines with productivity, maintainability, and size as minimum

parameters of an optimal estimation tool. Of these four parameters, size

is the most important. The other three can be considered to fine tune an

effort prediction based solely on size. How a specific model accounts for

these parameters determines the unique characteristics of that model.

The next section briefly examines how the Air Force recommended models

handle these parameters.

Current Support Model Paradigms

As stated earlier, there are four models recommended by the Air

Force Cost Analysis Agency. They are 1) Revised Intermediate

Constructive Cost Model (REVIC), 2) the System Evaluation and

Estimation of Resources (SEER), 3) the Software Architecture Sizing and

Estimating Tool (SASET), and 4) PRICE-SL. The REVIC, SASET, and

SEER models represent software support size as a constant number of

LOC changes made to the software per year (Silver2:3-12; REVIC:1.4;

SEER:6-5). The term used in this research for support size, Annual

Change Traffic (ACT), is borrowed from COCOMO. The ACT concept is

simple in that the estimator determines what percentage of total SLOC

will be changed per year and provides this to the model. ACT models a

2.24

system under continuous change. The best interpretation for a system

employing the block change process for support is a continuous series of

block changes with each effort being identical in size and taking exactly

one year to complete. None of the models is flexible enough to handle

variation from the one year schedule.

As for the maintainability parameter, only SEER accounts for

decreasing maintainability from memory and throughput. For

productivity, none of the models seem to account for learning curve effects

or for design entropy effects, nor do they capture the "bath-tub" curve

supported by the literature. Flexibility to handle various schedules,

changes in memory and throughput, a learning curve, and design entropy

is necessary to model the real world. REVIC/COCOMO algorithms can be

adapted to accept this flexibility.

COCOMO Model Description

Of the four Air Force recommended models, both SEER and

PRICE-SL are proprietary models and are not subject to unconstrained

alteration. Of the remaining two, SASET and REVIC, REVIC is much

easier to calibrate (Ourada:4.8). Since a model which could be freely

altered and easily calibrated was needed to test our hypotheses, model

research was oriented towards understanding the algorithms and

construction of REVIC. REVIC is essentially an implementation of

Boehm's COCOMO with a few additions. Therefore, a discussion of

2.25

COCOMO is warranted since it directly contributes to an understanding of

REVIC. The COCOMO model, as published in Barry Boehm's Software

Engineering Economics, has three levels of detail: the basic, intermediate,

and detailed levels. Each of these COCOMO levels are described in the

following sections.

Basic Descriptiom. The basic COCOMO model predicts development

man-months from one input. That input is size measured in thousands of

delivered source instructions (KDSI) (Boehm:57). The equation for the

basic model is shown in equation 2.7.

MM=a(KDSI)b Eq.2.7

where MM = Man-Months
a = coefficient factor
b = exponent factor

This equation reflects the exponential characteristic of large systems. If a

software system doubles in size, the effort needed to produce that system

more than doubles. This non-linear effect helps estimators predict a

variation in man-months given a variation in KDSI.

Since equation 2.7 is the basic COCOMO equation, it should only be

used for first-cut approximations (Boehm: 114). Although this equation can

account for large-scale variations in the characteristics of any project, the

parameter pair a and b can be changed to accommodate three basic modes

of a project environment: the organic, semidetached, and embedded modes

(Boehm:78-79). These basic modes are summarized in Table 2.6.

2.26

Table 2.6

Project Modes for the Basic COCOMO Model (Boehm:75-85)

Mode Description Equation

Organic - Thorough understanding of project
- Highly experienced personnel MM=2.4(KDS/)'•
- Stable and familiar anvironment Eq.2.8
- Minimal need for innovation
- Low premium on early completion
- Relatively small size (less than 50 KDSI)

Semidetached - Considerable understanding of project 1.12

- Intermediate or mixed personnel MM=3.0(KDS1)
experience

- Partial experience with project aspects Eq. 2.9
- Larger sizes (less than 300 KDSI)
- Mixture of Organic and Semidetached

Embedded - General understanding of project
- Tight constraints MM=3.6(KDSI)'-2"

- Complex hardware & software Eq. 2.10
- All sizes
- Take up hardware slack

Intermediate Desa'iptiom For second-cut approximations, the

intermediate COCOMO equation (see equation 2.11) contains 15 more

inputs to increase the accuracy of the effort estimate (Gulezian:237).

MM=a(KDSI)b]IC Eq. 2.11

where MM = man-months
a = coefficient
KDSI = thousands of delivered source instructions
b = exponent
11= product function
Cii = adjustment, i = attribute & j = selertion

2.27

The Cij adjustment factors' increase the usefulness of the basic model by

allowing for variations in 15 project attributes. Each factor allows

estimators to account for different project attribute characteristics and

thus fine tune the estimate. Estimators choose a value for each factor

from a set of possible values ranging from slightly below one to slightly

above one and then multiply the value by the values for the other 14

adjustment factors to produce a single Effort Adjustment Factor (EAF).

The 15 factors are briefly described in Table 2.7. Estimators choose which

value to multiply into the EAF based upon their assessment of the

attribute's effect on the project. Estimators choose a value for each factor

below, near, or above 1.0 depending on whether that particular attribute

reduces, preserves, or inflates the basic effort.

Adjustment factors are also known as cost driver attributes (Boehm: 115). effort multipliers. effort adjustment

factors, and cost driver multipliers (Gulezian:237). They all have a common theme -- inputs.

2.28

Table 2.7

Adjustment Attributes for
Intermediate COCOMO Model (Boehm: 118)

Area Factor Description Multiplication
Range

Product RELY Required Software Reliability 0.75 - 1.40

DATA Data Base Size 0.94 - 1.16

CPLX Product Complexity 0.70 - 1.65

Computer TIME Execution Time Constraint 1.00 - 1.66

STOR Main Storage Constraint 1.00 - 1.56

VIRT Virtual Machine Volatility 0.87 - 1.30

TURN Computer Turnaround Time 0.87 - 1.15

Personnel ACAP Analyst Capability 1.46 - 0.71

AEXP Applications Experience 1.46 - 0.71

PCAP Programmer Capability 1.42 - 0.70

VEXP Virtual Machine Experience 1.21 - 0.90

LEXP Programming Language Experience 1.14 - 0.95

Project MODP Modern Programming Practices 1.24 - 0.82

TOOL Use of Software Tools 1.24 - 0.83

SCED1 Required Development Schedule 1.23 - 1.00 - 1.10

Table 2.8 shows an example of the possible values for the

programmer capability (PCAP) attribute. As the programmer rating falls

below nominal, the effort multiplier increases. The opposite case is also

true. For cases which fall between two definitions, estimators can

SCED has two multiplication ranges. A factor of 1.0 represents projects with a nominal schedule. Reducing

the schedule from nominal results in a multiplication range of 1.00 - 1.23. Lengthening the schedule from nominal
results in a multiplication range of 1.00 - 1.10. In both cases, successively larger multipliers are used as the
schedule departs from the nominal estimate.

2.29

interpolate to find the appropriate multiplier. Thus, a 45th percentile

programmer could have a 1.08 multiplier.

Table 2.8

Programmer Ratings and Effort Multipliers

PCAP Definition Multiplier
Rating (Not based upon experience, only capability)

Very Low Ranked at the 15th percentile of all programmers 1.42

Low Ranked at the 35th percentile of all programmers 1.17

Nominal Ranked at the 55th percentile of all programmers 1.00

High Ranked at the 75th percentile of all programmers 0.86

Very High Ranked at the 90th percentile of all programmers 0.70

Detailed Descriptiom Third cut approximations require the most

comprehensive form of COCOMO, the detailed COCOMO model. The

detailed model increases estimation precision by breaking out all 15

adjustment factors into four phases of development: product design,

detailed design, code/unit test, and integration/test (Boehm:364). Although

the application of adjustment factors to separate phases leads to a more

accurate description of an actual development process, it increases the

predictive accuracy by only 2% (Boehm:521). This small increase in

estimation accuracy is usually not worth the added expense of assigning

adjustment factors to each phase. Thus, the detailed level of the

COCOMO model is not used in general practice and most estimators use

the intermediate form (Gulezian:237).

2.30

COCOMO Support. The COCOMO model normally is used to

estimate the development effort of a software project (REVIC:4). But

almost all the attribute factors which affect the development process also

affect the support process. The model needs only a few adjustments to

switch from predicting development effort to predicting support effort. The

main adjustment required is scaling the man-months of effort. A

prediction for development forecasts the entire effort for the development

phase. However, support effort is usually for a fixed period of time,

typically near one year. In a sense, the support model scales a total

development effort since scaling is done proportionally. Boehm calls this

scaling, which is the expected percentage of code changed for a specific

period of time during support, the Annual Change Traffic (ACT)

(Boehm:536). For example, if a development effort prediction was 120

man-months and the 3 CT was 10%, the expected support effort for one

year would be 12 man-months.

Another support adjustment to the COCOMO model involves

altering three of the adjustment factors shown in Table 2.7: SCED, RELY,

and MODP. The required development schedule (SCED) is only a factor

during development and is dropped as an input for support estimation

(Boehm: 129). The next adjustment factor, required software reliability

(RELY), measures the probability that the software will perform its

intended functions satisfactorily over its next run or its next quantum of

2.31

execution time (Boehm:372). Table 2.9 shows how the RELY values

change from development to support.

Table 2.9

RELY Ratings (Boehm:374,538)

Phase Ratings

Very Low Low Nominal High Very High

Development 0.75 0.88 1.00 1.15 1.40

Support 1.35 1.15 1.00 0.98 1.10

Table 2.9 quantifies the fact that programming low reliability software

during development requires less effort, but supporting low reliability

software requires more effort. The final altered adjustment factor, modern

programming practices (MODP), also manifests different effects between

development and support except, in this case, modern programming

practices help reduce effort in both development and support. The

difference is in the degree of effect as shown in Table 2.10.

2.32

Table 2.10

MODP Ratings (Boehm:538)

Phase__ RatingsPhase
Very Low Low Nominal High Very High

Development 1.24 1.10 1,00 0.91 0.82

2K 1.25 1.12 1.00 0.90 0.81

Support 8K 1.30 1.14 1.00 0.88 0.77
(Size) 32K 1.35 1.16 1.00 0.86 0.74

128K 1.40 1.18 1.00 0.85 0.72

512K 1.45 1.20 1.00 0.84 0.70

For small sized changes, the support MODP ratings are very close to

development MODP ratings. However, as the change size increases, the

impact of MODP increases in both a positive and negative manner. Thus,

as the size of the support change increases, the risk and payoff of using

MODP increases.

The previous COCOMO descriptions show that COCOMO has three

modes and levels of detail. Those simple options along with the minor

alterations for the support phase make COCOMO a relatively simple and

usable model. While REVIC uses all three modes, the intermediate level

of detail, and the support alterations, COCOMO has yet another

characteristic that makes it usable; COCOMO is straightforward to

calibrate.

Calibratio. Calibration of any model can improve the accuracy of

its prediction. In fact, Thibodeau, in his evaluation of software cost

2.33

estimating models for the Rome Air Development Center, showed that the

calibration of model parameters may be as important as the structure of

the model in explaining estimating accuracy (Thibodeau:6-6). If the

prerequisite data is available, all three levels of the COCOMO model are

straightforward to calibrate. The intermediate COCOMO model can be

calibrated in three ways depending upon the depth of calibration. All

three calibrations adjust some parameter(s) of the COCOMO model

through least squares regression to adjust for new or altered historical

data. The result should be an improved model which predicts better for

those efforts closely resembling the historical data used for calibration.

The first calibration method calibrates only the coefficient of the basic

model (see equations 2.7 - 2.10). Boehm recommends this method if the

project's historical data has less than ten data points (Boehm:529).

Calibrating the exponent of COCOMO equations with less than ten data

points may unduly bias the exponent because one erroneous data point

may overwhelm the contribution of the other nine data points. The least

squares regression equations for both coefficient and/or exponent

calibration are shown in equations 2.12 through 2.15.

2.34

Q t=(KD.SI)q i
Eq. 2.12

iMMaQi

i=l

where i = 1, 2, ... the number of historical data points
'I = product of Cij adjustment factors for a data point

a = coefficient for a set of data
b = exponent for a set of data (given)
Q = temporary variable from equation 2.12
MMj = man-month

If more than ten historical data points are available, then the

coefficient and the exponent can be calibrated at the same time. The

resulting calibration equations are still least squares regressions but

include the log function to account for the exponent and are solved

simultaneously.

ao=n

a, = 1 1og(KDSIJ)
i=l
n

a2= V og(Kl)S/)]2
=1 l SEq. 2.14

do =E log(MMIII),
4 i=l

n

d,= log(MM1II), log(KDMI),
i=l

where a, a,, a2, d, d, = intermediate variables for Eq. 2.15
n = number of historical data points
i = 1, 2, ... the number of historical data points

2.35

azdo-ald1
log(a)= 2

a0a2-al Eq. 2.15

b= a~d,-a'd0
2a~A2 -al

where a., a,, a2, d. d, = intermediate variables from Eq. 2.14
a = coefficient for a set of data
b = exponent for a set of data

The third calibration method adjusts the coefficient, exponent, and

all the effort multipliers for each effort adjustment factor and each mode.

In this calibration method, Gulezian extends the least squares regression

procedure to the multivariable case and improves the estimating accuracy

of COCOMO. For Boehm's original database (Boehm:496), the

intermediate form of COCOMO predicts within 20% of the actual effort

68% of the time while Gulezian has improved the intermediate model to

predict within 20% of the actual effort 75% of the time (Gulezian:240).

The extra accuracy does require more mathematical manipulations during

calibration and would likely involve using a personal computer, but the

extra accuracy is available.

COCOMO Strengths. The choice of modes, levels of detail, and

methods of calibration point to one of the advantages that COCOMO has

over other models: COC _0 is flexible. Estimators have had access to

the model and have studied the model for over ten years (Gulezian:236).

This open model permits estimators to explore inner workings, avoid

pitfalls, and adapt the model to different situations. The key element of

2.36

model flexibility is the ability to change the input parameters and

environmental factors. The parameters and factors which define the model

are not magically pulled from a hat. They are carefully derived through

statistical inference. If the environment of the software project changes

severely, then estimators can rederive the parameters and adjustment

factors to produce a model which more accurately reflects the current

environment. This process is called calibrating the model. A properly

calibrated model has been shown to give much more accurate results than

an uncalibrated or badly calibrated model (REVIC:4).

Another advantage of COCOMO is its wide-spread use. For

example, every DOD Defense Plant Representative Office (DPRO) has used

the COCOMO model to help estimate software (ENREV: 1). This

commonality helps organizations produce results which are understandable

and applicable to other organizations. Since many organizations

understand the environmental factors that affect an effort estimate, the

organizations can speak the same estimation language.

A final advantage of the COCOMO model is its usability. Dr. Barry

Boehm, the creator of the COCOMO model, fully explains the

implementation of the model is his book Software Engineering Economics

(Boehm:Chap 5 - 9, 23 - 30). If estimators encounter difficulties when

implementing the model, they can refer directly to the expert's handbook.

Furthermore, since the model is simple to program on a computer,

software versions of the model which run on the common personal

2.37

computer are available. The Enhanced REVIC Advisor (ENREV),

developed by Ernst, tutors users through each step of the estimation

process and explains all the terms needed for input (ENREV: 12).

(OXOMO Weaknesses. Of course, the COCOMO model is not the

panacea for estimators' problems. The model does have weaknesses.

Although calibration was mentioned as a strength, it is also a weakness.

While calibration offers flexibility to change environments, it is mandatory

when environments change significantly. The model becomes inaccurate

unless it is calibrated to the new environment (van Genuchten:38) and

calibrating the model is not trivial. First, input data concerning the two

basic equation parameters and the 15 adjustment factors must be

available. This requires enough data to establish trends for each input so

that new values can be inferred. This kind of data is scarce and, if found,

is usually of poor quality. Secondly, someone with statistical skill and

COCOMO knowledge must actually perform the calibration. Finding a

qualified estimator to calibrate a model can be difficult. The lack of these

prerequisites often constrain estimators to use the latest model on hand

regardless of the model's proper calibration.

Another weakness of the COCOMO model is the lack of specific

adjustment factors for the support phase of a project. Many development

attributes do indeed set support attributes, but to expect that support is

merely an extension of development can mislead estimators about the true

nature of the support environment. Some support factors, such as support

2.38

growth phases or block changes, are unique to the support phase.

COCOMO does not sufficiently provide for these support-unique inputs

(Ferensl:8,9).

The greatest weakness of the COCOMO model is the model's

reliance upon KDSI as a primary input. First of all, KDSI is rarely

estimable early in a software life-cycle (Bourque: 161). But fortunately, as

the support phase nears, actual KDSI values can be input into a support

model. Also, the definition of a delivered source instruction (DSI) is open

to some interpretation. Boehm defines a DSI as a single, delivered line of

code which excludes comments but includes job control language, format

statements, and data declarations (Boehm:59). This definition reduces

misinterpretation but does not eliminate it. Unless estimators follow the

explicit definition used during calibration, they will bias their results.

Finally, one DSI for a particular programming language is not necessarily

equivalent to a DSI for another programming language (Lehner: 139). As a

result, simply switching programming languages can bias effort prediction.

These three weaknesses of mandatory calibration, missing support

adjustment factors, and unreliable KDSI inputs often compel estimators to

use or create other models.

COCOMO & REVIC. As mentioned earlier, REVIC is an

implementation of the COCOMO model. Maj. Ray Kile programmed

REVIC, a military version of COCOMO, using a data base of 281

completed contracts from the Rome Air Development Center database

2.39

(ENREV: 1) to calibrate a new set of coefficients and exponents for all three

modes of the model. REVIC also includes an additional mode, with its

own coefficient and exponent, for Ada developments using an object-

oriented analysis (REVIC:2). Also, REVIC also has 4 extra adjustment

factors: requirements volatility, required reusability, classified security

application, and management reserve for risk. To further aid estimators,

REVIC includes a simple sizing model which sums the sizes of separate

computer software components (CSCs). Users can provide a low, high, and

most probable size for each CSC. These CSC size ranges can help set a

total size range. The extra descriptors combined with a simple interface

have made REVIC a popular model throughout DOD.

Conclusion

This literature review examined definitions of software support as

well as the processes used to accomplish support. The essential areas of a

capable estimating model including size, maintainability, productivity, and

schedule were explained. Finally, the COCOMO model was scrutinized to

provide an understanding of its algorithms, strengths, and weaknesses.

The sources reviewed all indicate that the existing software maintenance

effort estimation tools are inadequate for estimating software support. In

general, the tools are inaccurate or inappropriate. However, many

drawbacks of existing models have been addressed in the literature along

with possible improvements. Combining some of the improvements and

2.40

addressing some of the drawbacks, provides a potential for improving

support cost models.

2.41

III. Methodology

Chapter Overview

This chapter details the steps needed to analyze the data to support

each of the hypotheses. For the first hypothesis, the functional bottom-up

construction of a software cost estimation model, the method used to model

the various levels of the block change process is described. Also described

is the process used to develop an estimation model from the block change

process model. Since no data was available to validate the new model, a

discussion of how validation can be accomplished is presented. For the

second hypothesis, the functional top-down calibration of a statistically-

based software effort estimation model, discussion is limited to the data

collection method and a description of the data originally sought. Further

work on this hypothesis was impossible due to lack of data. However, a

method for formally evaluating model performance once data becomes

available is presented. This discussion follows a chronological flow of

events from the data input sequence to applying statistical rejection

criteria.

Hypothesis I Methodology

Block Change Model Methodology. Documenting the block change

process as a model was a necessary first step to program a software

support cost model. The objective was to create a cost model that is closer

3.1

to the detailed estimate methodology than current parametric models. The

transition from paper model to 6oftware design is eased by the proper

selection of documentation style. This research uses the Object Oriented

Design documentation style as described by James Rumbaugh and others

in Object-Oriented Modeling and Design because of its versatility and prior

experience with that design method. Selecting a software design

methodology to document the real block change process has two main

advantages. The first is the reduction in software system design time

gained by avoiding translation of requirements from some other

abstraction media into a software design. The second is direct traceability

from the model to the software design. Both of these advantages resulted

in fewer errors in the final product.

Rumbaugh's design method revolves around three model types: the

object model, the functional model, and the dynamic model (Rumbaugh:6).

The model types describe different characteristics of the problem space,

and, when combined, form an overall description of a system. Each model

type is described in the following paragraphs.

The object model is the primary description of the agents within the

process. It is described by Rumbaugh as a graphic representation that

"captures the static structure of the system by showing the objects in the

system, the relationships between objects, and the attributes and

operations that characterize each class of objects" (Rumbaugh:21). Ak t

3.2

object is defined as "a concept, abstraction or thing with crisp boundaries

and meaning for the problem at hand" (Rumbaugh:21). No process or

temporal information on the system is captured by the object model.

The functional model shows how data flows from one process to

another in a series of data flow diagrams (Rumbaugh: 123). It traces the

inputs of the system through transformational processes within the system

to the outputs of the system. No information on the static structure or the

temporal behavior of the system is captured by the functional model.

The dynamic model describes the temporal behavior of the system.

It uses state transition diagrams to describe "the sequences of operations

that occur in response to external stimuli" (Rumbaugh:84). No structure

or process information is captured by the dynamic model.

The importance of each model depends entirely on the system being

modeled. For example, if the system doesn't change over time, the

dynamic model is trivial and may be omitted. The purpose of each model

is to force an analyst to examine and understand the static structural,

procedural, and dynamic facets of the system. Each model uses a standard

set of labeled symbols to pictorially describe system behavior. (A summary

of each model's notation is shown in Appendix A.) Label definitions for all

the models are contained in a data dictionary. The data dictionary coupled

with the graphic nature of the models allows the analyst to interact with

system experts to avoid miscommunication.

3.3

Model Design Process.

Step 1. The first step captured the attributes of a single

iteration of a block change process as described in the literature review.

The description was in the form of an object model, a functional model, a

dynamic model, and a data dictionary. The object and functional models

provided a complete picture of the block change process, so the dynamic

model was dropped. The object and functional models were verified by

consulting with HQ/AFMC and by comparing the models to the available

literature.

Step 2. The second step started with the design from the

models of a single block change process and evolved into the models of a

series of block change processes. This "ideal" (described in Chapter II)

support cost estimation model for the block change process was also

documented in the form of an object model, a dynamic model, a functional

model and data dictionary. The result of this step was three graphic

representations that combine to form a description of a software support

cost estimation model. At this point the ideal model was still generic. Any

development estimation tool could, in theory, have been adapted to

emulate the ideal model by repeated development estimates or by recoding.

The ideal model was verified by comparing the object, functional, and

dynamic models with the Step 1 models and with available literature.

Step 3. The third step instantiated the ideal model based on

the COCOMO equations discussed in Chapter II. This instantiation

3.4

placed the COCOMO mathematical models into the ideal model's object,

functional, and dynamic representations. Verification consisted of

comparing the instantiation with the ideal model and ensuring the

COCOMO mathematical model was correctly transcribed.

Step 4. The fourth step was to prototype the instantiation.

Visual Basic was selected as the coding language since it is a quick, easy,

object-centered language designed to create code for the Windows

environment. Rudimentary verification was obtained by comparing the

estimate of a single block change of all new code to a REVIC estimate of a

development effort with identical parameters. The support costs were

compared with other models to determine the magnitude difference

between Air Force recommended models and the new model. The results

are presented in Chapter IV.

Completion of the above steps did not result in a calibrated or

validated model, only a feasible model. Calibration and validation

required actual time series support data that were not available. The

result of calibration and validation would have been an expected prediction

accuracy. Without these steps, the model has an unknown accuracy.

However, validation can be accomplished by calibrating the model and

gathering the statistics discussed under Model Comparison Methodology

later in this chapter.

3.5

Hypothesis 2 Methodology

Data Collectiom. Data could not be obtained to examine the effect of

functional calibration on model accuracy. (For a full account of the

problems encountered, please refer to Chapter IV.) The following

paragraphs discuss what type of data needed to be collected and why.

Historical data from the software block change process was needed

from as many combat aircraft as possible. As a minimum, for each block

change, three pieces of data were needed: the size of the effort (divided

into new, modified, and deleted lines) measured in thousands of lines of

delivered code (KDSI), the magnitude of the effort to produce the code

measured in man-months (MM), and a functional description to place the

data into one of our proposed functional categories.

Also needed were some limited data concerning the detailed

characteristics of each block change to help fine tune a model's predictive

capability. The data collection forms prepared to obtain this data are

shown in Appendix B. However, the data were not available. Since the

research assumes that KDSI is the single best predictor of effort, the

inability to obtain detailed characteristics (other than size) should not

hinder the ability to determine whether functional division of block

changes improves predictive accuracy. Extra block change characteristics

could help determine to what degree functional division improves accuracy

for each particular model. Collection of extra descriptive data suitable for

each model was simply impractical due to time and money constraints.

3.6

Therefore, the potential benefit of setting the production characteristic

input variables was balanced against the potential error (and effort

required) which might be introduced by choosing inappropriate values, and

a decision was made to use the nominal values provided in the model for

those inputs.

Attempts were made to obtain historical block change data from two

basic sources. The first source was existing Air Force databases which

have already compiled the input values and output values concerning this

research. As stated in Chapter I, many prediction models are built by

collection and statistical regression of historical data. It seemed natural

that historical data would be systematically collected and stored to help

make new models or improve existing ones. While the Air Force

recognizes the need for historical data, the current databases were found

to contain data for software development but not software support.

Because of this lack of support data, questionable accuracies (Ourada:4. 1),

and unusable variable formats of the database, no useful data was

obtained from this source.

It was expected that more and higher quality block change data

could be obtained by contacting the System Project Offices (SPOs) located

at Wright-Patterson AFB (WPAFB). Virtually every Air Force combat

aircraft is represented by some SPO located on the base. The SPOs

assisted in the collection of some data by providing contacts within the

appropriate software maintenance organization (SMO). In all cases, the

3.7

SMO was at an Air Logistic Center (ALC) and the ALCs provided all the

data found.

Model Ccmniiriso Methodaogy

This section describes how to recalibrate existing (and future)

support cost models and gauge the resulting accuracy increase. This

methodology is generic and can be used with any software cost model once

data becomes available. The data requirements are discussed under

Hypothesis 2 Methodology. Recall from Chapter II that ten data points or

more are required for accurate calibration of the REVIC exponent. Ten or

more data points should suffice as a minimum for other models as well.

Model calibration should be done according to the User's Manual for the

software. Once the calibration procedure is complete the model is

calibrated to the new data set and will be ready for estimating.

Data Input Sequence. If data had been available, the models would

have been operated under three different scenarios. The first scenario was

to input no calibration data at all. In other words, this scenario did not

include recalibrating the model. The model was to be run "out of the box"

using its existing calibration. The predictions obtained from this scenario

would serve as the baseline to determine the predictive improvements of

each subsequent scenario. The second scenario included recalibrating the

models based upon all the block change data from all the functional

categories. Although this scenario does not functionally calibrate the

3.8

models according to categories chosen in Chapter I, this calibration should

produce a model that is functionally narrowed to the area of OFP software.

The models calibrated in this scenario were expected to predict better than

the uncalibrated models under the first scenario. The third scenario

included recalibrating the models based upon the inputs from the

functionally stratified data. The models calibrated according to the third

scenario were expected to predict the best.

Apply Statistics. Statistical techniques could be used to evaluate

which scenario produces the best predicting model. Devore defines a

statistic to be any function of random variables constituting one or more

samples, provided the function does not depend on any unknown

parameter values (Devore:231). The two major constructs of a statistic are

a set of random data and a function to operate on the random data. From

this basic starting point, boundaries on the methodology begin to emerge.

First, the statistical functions chosen to employ as an evaluating tool

center around the branch of statistics known as analysis of variance

(ANOVA). The nature of this research fits this type of analysis very well.

As the predictive capability of a model increases, the variance of the error

of the model's prediction will decrease. The predictive accuracy of a model

is measured by the variance of the errors of that model. Second, the

limited available data could not provide random data. Ideally, a random

sample would be chosen from data on all the software support efforts in

3.9

the entire Air Force history. Limited data forced the assumption that the

data collected would not significantly bias the results.

One way to help compensate for this weakness is to apply more than

one statistical function to the available data. Four statistics, three of

which are related to ANOVA techniques, can be applied. The first statistic

is the adjusted coefficient of multiple determination (R2). The value of this

statistic can be interpreted as the proportion of the total variation of the

observed values' that can be explained by a multiple regression model and

adjusted for the degrees of freedom 2 (Neter: 241). The equation used to

calibrate R2 is shown in equation 3.1.

n
SSE_ 1 (E aai _Eea?2

R2=1- n-p =1- i=1 .*n-_ Eq. 3.1
SSTO n n -p
n-1 (Ea,-E)2

i=1

where R 2 = coefficient of multiple determination
SSE = sum of squares for errors
SSTO = sum of squares total
n = number of data points
p = number of estimated parameters (2)
i=1,2, ... n
E, = actual effort
E,.1 = estimated effort
Ewg = average effort

An observed value for this research would be the effort in man-months associated with a particular block

change.

2 The degrees of freedom can be considered as to the number of observations minus the number of parameters

required to be estimated. Smaller sample sizes have smaller degrees of freedom.

3.10

In equation 3.1, SSE is associated with the variation of the estimation

errors of the regression model, SSTO is associated with the total variation

of the observed values, n is the number of observations, and p is the

number of parameters estimated by the regression model. The possible

values for R2 range from 0.0 to 1.0. The variation explained by the

regression is assumed to come from a linear regression of the historical

data. If the assumed regression is not linear, then the regression must be

transformed into a linear regression or a different statistic should be used.

For example, COCOMO uses an exponential model that can be

transformed into a linear model by taking the logarithm of both sides of

the model equation.

The second statistic is the relative root mean square error (RRMS)

where error is the difference between the actual and estimated value. The

statistic is the ratio of the root mean square over the average actual value

(see equation 3.2).

R____R__-_____ Eq. 3.21
E (E E)

ni=l

where RRMS = relative root mean square
RMS = root mean square
n = number of data points
i=1,2, ... n
Eavg= average effort
E, = actual effort
Ees, = estimated effort

3.11

The third statistic is a simple prediction level. The function is the

ratio of the number of samples, k, whose magnitude of relative error

(MRE) is less than or equal to a given percentage, 1, over the total number

of samples, n (see equations 3.3 and 3.4). Although the value of the

statistic is simply a ratio of samples which meet the minimum MRE, the

statistic is easy to comprehend and does provide a broad gauge to measure

an improvement. The possible values for the prediction function range

from 0.0 to 1.0. A minimum value for MRE of 25%, where MRE is

computed as in equation 3.4, was used in this study.

PRED(/)= k Eq. 3.3
n

where 1 = prediction level percentage
k = number of samples within prediction level
n = number of samples

MRE= IEa-EuI Eq. 3.4

where MRE = magnitude of relative error
E,, = actual effort
E, = estimated effort

The last statistic is the pro-ortion of sample estimates which are

more accurate after functional calibration. By applying the above

statistics to each model before and after a calibration, the predictive value

can be assessed. If the predictive value of a particular block change

sample improves, then it is assigned a value of one. Otherwise the block

3.12

change sample is assigned a value of zero. The sum of those samples

which improve after calibration can be described as a binomial variable.

The proportion is the value of the binomial variable divided by the total

number of samples. If the functional orientation of the model does nothing

to improve the predictive accuracy of the model, then an improvement

ratio near 0.0 is expected. A ratio near 1.0 would indicate improved

predictive accuracy.

Apply Rejection Criteria. For each statistic, a predetermined

rejection criteria is needed to determine whether the value of the statistic

supports or rejects the hypotheses. The following paragraphs provide

recommendations and a discussion of alternatives and potential problems.

While the choice of rejection values is somewhat arbitrary, a pass-fail line

is needed to judge any improvement in the predictive capability of

functionally oriented models.

For the adjusted coefficient of determination, an R' value of .9 or

higher indicates that the predictive capability of that model is acceptable.

The R2 associated with a given model can be used to compare different

models to determine which explains more variation. However, since

detailed input information required for each model may not be available,

comparing the R 2 of one model with high quality inputs to the R2 of

another model with low quality inputs may not be conclusive. These

inappropriate comparisons may restrict the ability to state which model is

better than the others. When trying to support the main hypothesis of

3.13

improvement, the value of R 2 will either rise or not rise. By observing the

change in R2, an assessment of a model's improvement can be made.

For the root mean square error, an RRMS value of 0.25 or less to

indicate an acceptable model was chosen. Using this statistic to compare

two models may be inconclusive because of different input requirements

for each model. However, the statistic can be used to determine whether

an individual model shows improvement after functional orientation.

For the percentage prediction function, a predictive percentage of

within 25% of the actual value on 75% of the samples was chosen to

indicate an acceptable model. Once again, using this statistic to compare

two models may be inconclusive because of different input requirements

for each model. However, the percentage in the prediction zone can also

be used to determine whether an individual model shows improvement

after functional orientation.

For the improvement ratio, the hypothesis that the model does show

improvement from functional orientation is accepted if the ratio supports a

0.1 level of significance. This rejection criteria is the main criteria for the

hypothesis that functionally calibrating a model improves predictive

accuracy.

Condusion

This chapter described the methodology for constructing and

evaluating the two hypotheses. The test tool of the first hypothesis is a

3.14

model which competes with the four Air Force recommended models. The

design process for this new model and the calibration/verification

methodology were presented. Under the second hypothesis, four statistics

that could be used to evaluate the four Air Force recommended models

within the five functional categories were reviewed. However, the second

hypothesis could not be statistically tested due to a lack of useable data.

Suggestions for gathering data to validate this hypothesis in future

research are presented in Chapter V.

3.15

IV. FiUdings

Chapter Overview

This chapter summarizes the activities for evaluating the two

hypotheses. First, in support of the bottom-up model construction

(Hypothesis 1), Boehm's COCOMO maintenance equations are adapted to

the avionics PDSS process to produce a prototype software model. Second,

in support of our functional calibration (Hypothesis 2), calibration

procedures are defined for the prototype model in order to represent a set

of historical data. Next, attempts to obtain useful support data from Air

Force organizations are reviewed and then, because of a lack of useful

data, fictional data is generated as a substitute. Finally, the fictional data

is processed through the prototype model to demonstrate how the results

of processing actual data might appear. The result of the model building

was a software tool that could confirm or deny the hypotheses with actual

data.

Hypothesis 1: Functional Construction of a Software Estimation Model

Constructing the prototype model occurred in three phases. The

first phase included describing an avionics block change process in object

oriented terms. The second phase consisted of a review of the description

to determine if it adequately reflected the existing software support

environment. After validation the description, the third phase involved

4.1

implementing parts of the description in Visual Basic' code. (See

Appendix C for the source code.) The Visual Basic program was a tool for

demonstrating our hypotheses and a prototype for constructing a software

support estimation program.

Model Design Using the object oriented design methodology

described in Chapter III to document the block change process was very

successful. To begin, we modeled a single block change cycle as an object

model, a functional model, and a dynamic model. The dynamic model

provided little insight into the block change process; it tracked only

whether software was currently in a block change process or not.

Therefore, the dynamic model was removed from the model set. The set

was now composed of an object model that identified the important players

in the block change process and a functional model that described the

block change process as a series of subprocesses. The final results are

detailed in Appendix D and summarized in Figure 4.1.

Visual Basic is a registered trademark of the Microsoft Corporation.

4.2

Software Support Data Flow Diagram

Problem Reports
Need o Esmt.

- : Estimate Effort Prioritize ort. ccB
,! Effort Estimea Board ECP , Process/

Approved ECP

Current Baseline
Develop

SChanges

(Rework Test Tape

Test Tape

Flight Faid
Flight Problems Tape

not Waivered ega Ground
Flntegrated Integration

Protlem Reports Fliog FTegs t/ ='Tap Test

Warm ProbemsTest Tape

Board Tested Tape Min9r" Ground Faded

Wavered Tape Problems

/ eprodueIntegration 7
aeproduce Waiver roblems not.-- Rework

Current Baseline '- . /) - -
"7__.

Updated Tapes
& Manuals

Problem Reports

Field '
Ch~ange

Operational Tape

Figure 4.1 - Software Support Functional Model

Model Design Validation. Our model diagrams served as a common

reference for comparisons with support models from existing avionics block

change process. AFMC/HQ recommended discussing the support process

with a process action team (PAT) at Sacramento ALC who had completed a

detailed review of the entire PDSS process in October 1990. The PAT

compiled a detailed report using a computer aided software engineering

4.3

(CASE) design tool and structured system design techniques to document a

PDSS process (Talbot). Structured design, a predecessor to object oriented

design, was compatible to our model for direct comparison. Comparing the

structured analysis data flow diagrams prepared by the PDSS PAT (see

Figure 4.2) to our object oriented functional models (see Figure 4.1), which

used the same notation, was direct and simple. The models correlates well

with only a few minor differences.

o PROCESS.2 PRCE 5 3
ANALYZE ANALYZE

SYSTEM SOFTWARE

PROCESS 1 REQ REQ.
CHANGES

/ N k,,s.oo<.

POST MoDESIGN

DEPLOYMENT SOFTWARE

7 PROCESS l SOFTWARE
PRODUCE SUPPORTMODIFICATIONPRCS

PACKAGEPRCS

PROCESS 5
/ / MODIFY)

PROCESS7 /PROCESS6 SORECD

INTEGRATION INTEGRATE
TESTING SOFTWARE

Figure 4.2 - PAT Functional Model (Talbot: 15)

We contacted Sacramento ALC to reconcile the differences between

the PDSS PAT model and our block change model. The differences stem

4.4

from an assumption made by the PAT; their model assumed successful

completion of all software support activities on the first try. The PAT

model did not show any rework or waiver paths. Since the block change

model had no assumption of success, it included rework and waivers as

alternative paths from both the integration and flight test processes (see

Figure 4.1). Table 4.1 is a comparison of the single block change cycle

model to the PAT model and the MIL-HDBK-347 process description. The

close correlation of the our model to the PAT model was tacit confirmation

of our model.

4.5

Table 4.1

Block Change Process Model Comparison

HYPOTHESIS I SACRAMENTO ALC MIL-HDBK-347
Block Change PAT Process Process
Process Model

1) Estimate Effort 1) Evaluate Changes 1) Initial Analysis

2) Prioritize Board

3) CCB Process

4) Develop Changes 2) Analyze System 2) Develop Software
Requirement

3) Analyze Software
Requirement

4) Design Software

5) Modify Source Code

6) Integrate Software 3) System Integration
and Test

5) Ground Integration Test 7) Integration Testing

6) Flight Test

7) Waiver Board (Not Modeled) (Not Modeled)

8) Rework (Not Modeled) (Not Modeled)

9) Reproduce Tape 8) Produce Modification 4) Product Logistics

10) Field Change Packag

Model Construction.

Choosing a Language. Confirming the block change support

model signaled the clearance to translate the model description into

software code. We chose to code our model in the Visual Basic

programming language for several reasons. The foremost reason for

choosing Visual Basic was the simple and understandable language

syntax. The mathematical algorithms implementing the support model

4.6

were easy to comprehend because of the simple syntax. Another reason for

selecting Visual Basic was the availability of pre-written software

components, called controls, which eased our programming task. These

controls also provided an excellent prototyping environment for quickly

trying different possibilities. The last reason for choosing Visual Basic

was the supplemental software included with the Visual Basic package

which had the capability to create executable and distributable programs.

Thus, anyone who wished to run our prototype could obtain free copies.

The Visual Basic language proved to be a capable and flexible language for

prototyping.

Refining the Model. Our intention of programming with

Visual Basic was not to program the entire PDSS process but to program

only that portion of the process needed to test the hypotheses. The basic

approach was to adapt the maintenance portion of Boehm's COCOMO

model to reflect block change characteristics cited in the literature review

and the PDSS process as modeled in Figure 4.1. The model accepted a

development code size, an expected change in code size, and a support

attributes as a starting point to iterate several successive block changes.

While Boehm's COCOMO model used annual change traffic (ACT) to

represent the expected change size, the prototype introduced another size

measurement called block change traffic (BCT). Furthermore, while the

COCOMO model did not explicitly vary any attributes during successive

4.7

block changes, the prototype model altered some attributes to account for

temporal changes from block change to block change.

Block Change Size. As stated in Chapter II, Boehm described

the expected change in code size during one year of support activity as the

ratio of the expected number of added and modified delivered source

instructions (DSI) over the total number of DSI. This ratio, called annual

change traffic (ACT), was the predecessor to the prototype ratio, BCT.

BCT was the ratio of equivalent DSI (EDSI) over the total number of DSI.

Note that while the prototype EDSI was conceptually the same as EDSI

from Boehm's conversion cost estimating (both are an equivalent size and

are weighted), the prototype EDSI was not calculated in the same manner.

The model did not use Boehm's conversion cost estimating, so all future

references to EDSI mean the prototype EDSI, not Boehm's. The model

EDSI was the weighted sum of the expected number of added, modified,

and deleted DSI for a particular block change. While Boehm's ACT did not

include deleted DSI or weight any code, the model EDSI included lines of

deleted code and weighted the three change categories. Weighing the

expected added, modified, and deleted lines of code consisted of multiplying

each change category by values from SOFTCOST-R's reused code

weightings in Table 2.2. Since the prototype did not distinguish

differences between modules and lines, it added the weightings for module

and line deleted and for modules and lines modified or changed. The

prototype model also ignored the retested modules because avionics testing

4.8

effort was better estimated by other means. The resulting equation for

EDSI is shown in equation 4.1.

EDSI=0.53 *KDSIAu +0.51 ,iKJM d+0.26,KDSI, Eq. 4.1

where KDSI = thousands of delivered source instructions
EDSI = equivalent KDSI

This definition of EDSI was an attempt to better define the block

change size. Remember that the major correlation in predicting effort was

between size and effort. As stated in Chapter II, better predictions in size

estimates will produce better effort estimates. Although the code size

during support was not exactly reused code as used by SOFTCOST-R,

reused code was similar enough to redeveloped (support) code to warrant

the reused weightings as a starting point for a better estimation of size.

Tenporal Changes. With an adequate description of a block

change size, we described the temporal effects for each block change. The

front and back ends of the bath-tub curve, as described in Chapter II, can

accompany successive block changes. These temporal effects could come

from at least four potential sources: learning, size growth, memory and

throughput utilization, and entropy. Each of these sources is discussed in

the following paragraphs.

The first temporal effect encountered in the support phase of

software was the learning effect. The learning effect was a direct result of

support personnel working with software and its documentation. As these

4.9

personnel increased their knowledge of the support software, they could

Letter identify errors and more efficiently correct them. However, the

learning effect did not continue throughout the entire PDSS phase.

According to literature cited in Chapter II, learning lasted from three to

six years (SYSCON:44). A possible contributor to this time window is

personnel turnover. When software personnel depart from a position, new

personnel must replace them, but these new personnel are not as

knowledgeable or experienced. The departing personnel take with them

much of their learning, and that learning is lost.

The learning curve implies a relationship between the complexity of

the software and the rate at which learning occurs; more complex software

should take longer to learn. The prototype did not include a

complexity/learning relationship because no literature sources were able to

quantify it.

The prototype model did introduce a learning effect model by

decreasing COCOMO's analyst experience (AEXP) and language experience

(LEXP) multipliers for the first six block changes. Following the curve

suggested by the SYSCON data in Table 2.5, the prototype multiplied the

AEXP and LEXP attributes by values less than or equal to 1.0. The

equation that calculated these values, equation 4.2, came from the

averaged exponents of the design and development equations in Table 2.5

(see Appendix E for derivation). Equation 4.2 discarded the coefficients

from Table 2.5 to force an initial multiplier of 1.0 for block change zero

4.10

(development). Succeeding block change multipliers were all less than 1.0,

resulting in an effort reductions, and were applied equally to AEXP and

LEXP for the first six block change cycles. In order to use the learning

effect relationship, equation 4.2 assumed each block chan.,e was one year

in length. A change to the block change duration would require

additional calculations to maintain the documented relationship.

LE=(BC,) -Q3745 Eq. 4.2

where LE learning effect
BCQ = block change number
i= 1, 2, .. 6

The second temporal effect encountered in support was size growth

in the software being maintained. As software was modified, it usually

grew in size. Size was important to track because estimators needed to

know how much of the target computer memory remained unused in order

to estimate an increase in the support effort per line of code. A larger code

size required more effort per line to support.

The prototype model encompassed a method to increase the size of

the support code in a realistic manner. The term realistic means that the

model complied with the constraint that size cannot grow beyond 100%

memory capacity. Once software grows to over 95% of available memory,

the model limited the size growth for successive block changes to one-half

the remaining memory. Therefore, in later block changes, the software

size grew very slowly and asymptotically towards 100%.

4.11

The specifics of size growth were implemented as a two part

process. First, an estimator provided a development total code size and a

memory utilization percentage. Next, the number of deleted and added

lines of code for each block change were respectively subtracted and added

to the previous block change size. The result was a changing total code

size that typically increased in size since the number of added lines was

usually greater than the number of deleted lines.

As the total size of the code increases, it can affect the next set of

temporal effects, memory and throughput utilization. The prototype model

treated these two effects as one because of their common characteristics.

As the utilizations increase, they both increase the required support effort

and they both are limited to 100%. Aircraft avionics systems have definite

memory and throughput limits that can't be exceeded. As the memory and

throughput limits are approached, support programmers must carefully

engineer the code modifications to remain below the memory and

throughput limits. When adding code near the memory and throughput

limits, software support programmers must choose size efficiency over code

simplicity and clarity. The resulting code is more complex than code at

lower memory and throughput limits. This complex code requires greater

intellectual investment and more time to create. The code is also more

error prone. The prototype model included both temporal effects in two

ways. The model set how the level of utilization affects one particular

4.12

block change and how the utilization level changes during sequential block

changes.

For one particular block change, the levels of memory and

throughput utilization could affect the original COCOMO attribute

multipliers of the main storage constraint (STOR) and the execution time

constraint (TIME) (see Table 2.7). Boehm defined the STOR rating as a

percentage of main storage expected to be used by the subsystem and any

other subsystems consuming the main storage resources (Boehm:410) and

the TIME rating as the percentage of available execution time expected to

be used by the subsystem and any other subsystems consuming the

execution time resource (Boehm:401). Both of theL,, definitions fit nicely

with the objective of describing the effects of memory and throughput

utilization'. Although Boehm already quantified the affects of these

attributes with a set of four discrete multipliers, the prototype altered the

development attributes with a continuous function based on the utilization

percentage. The coefficients and exponents of the memory fill and timing

fill relationships of the design and development phases from the SYSCON

report (Table 2.3) were averaged to produce a composite relationship that

covered support design and development. The resulting equations

provided a multiplier to apply against the development STOR and TIME

attributes as the memory and timing percentages varied during block cycle

I The prototype model considered available throughput as the mathematical inverse of available execution

time. Both degrade at the same rate.

4.13

changes. Both equations 4.3 and 4.4 produced a multiplier of 1.0 at a

utilization rate near 62% utilization, so the model used 65% utilization as

the threshold for applying the equations. At utilization rates of 65% or

more, the equations produced multipliers greater than 1.0 to represent an

increased effort.

ME=l.905*(%MemoryFill100).42- Eq. 4.3

where ME = memory effect

TE=l.82(%Throughput/100)1-o Eq. 4.4

where TE = throughput effect

At 95% memory and throughput utilization, 'oth equations combined to

yield a 3.01 multiplier. This 3.01 value implied that the effort required at

95% utilization rate is about three times greater than an effort at less

than 65% utilization. This 3.01 value also compares favorably with the

95% result of 3.78 shown in Table 2.4.

Once the memory and throughput utilization effects were

established, we determined how the utilization would vary from block

change to block change. Because of an absence of historical time-series

utilization rates for software support, the prototype substituted a simple

rule: both memory and throughput utilization varied directly with size

growth as described above. Although this rule applied to memory

utilization, it did not precisely describe throughput utilization. For

throughput, The model accepted this imprecisio,' in order to keep the

4.14

model simple. However, since neither memory nor throughput utilization

can exceed 100%, the prototype limited utilization growth to one-half the

remaining utilization when utilization exceeded 95%.

Size growth, along with dwindling available memory and

throughput, also contributed to the fourth bath-tub curve effect, design

deterioration. We prexerred the term design entropy although none of the

literature reviewed used this term. The word entropy highlights an

irreversible nature of design degradation as code is iterated through

multiple block changes. We suspected design entropy was primarily a by-

product of making adaptive changes to software. Later in the PDSS life

cycle, as memory and throughput reserves dwindle, design entropy can be

accelerated by the necessity to code for efficiency instead of simplicity.

Efficient and complex code often leads to complex and degraded designs.

Another contributor to design entropy could occur from poor software

engineering practices during PDSS. Whatever the cause, the result was

the same. The design lost flexibility, and the original structure of the

software decayed as changing requirements are implemented. How

quickly design entropy affected support depended on the original design.

Simple, well-engineered, and well-documented code that is built and

maintained with object oriented or structured design techniques should not

show the effects of entropy as early as complex, poorly-designed code

(spaghetti code). We faced a challenge trying to express and quantify this

4.15

concept. As a minimum, two components were needed - entropy timing

and magnitude of impact.

With no data or literature quantifying the timing or magnitude of

design entropy, we resisted the temptation to create a relationship out of

thin air and, instead, left it out of the model. The model relied on the size

growth and the reduction of available memory and throughput to capture

the upward sloping portion of the bath-tub curve.

When all of the effects from this section were combined into one

equation, the result was equation 4.5.

MM.a• =(BCT) a(KDSI)b (1) *LE*ME*TE Eq. 4.5

where MM = estimated man-months
BCT = block change traffic
a = calibration coefficient
b = calibration exponent
KDSI = thousands of deliver sources lines of code
17= product of the COCOMO multipliers
LE = learning effect
ME = memory effect
TE = throughput effect

Hypothesis 2: Functional Calibration to Improve Model Accuracy

Although equation 4.5 adequately described the general shape of a

time-series of support efforts for a single unit of code, the coefficient

parameter, a, and the exponent parameter, b, needed accurate values so

the equation could produce the best estimates possible. Finding the best

parameter values for a particular scenario was done through calibration

from historical data. It was possible to calibrate equation 4.5 using the

4.16

calibration technique outlined in Chapter II (equations 2.14 and 2.15) by

including BCT as shown in equation 4.6.

a(KDSI)b=- MM, =Q, Eq. 4.6U1i *BCT 1l

where a = coefficient parameter
b = exponent parameter
i = 1, 2, .. number of block changes
KDSI = thousands of DSI total code size
MM = man-months of effort
BCT = block change traffic
n = product of adjustment factors and temporal effects
Q = temporary variable for future equations

To begin the calibration process, the prototype model used a set of

historical MM, BCT, and H] values to calculate a set of Q values. Each Qi

value represented an effort for correlation against a corresponding block

change size. Although KDSIi and Q1 in equation 4.6 appeared to correlate

total size and effort, the real correlation was between EDSI and effort.

BCT, which was contained in EDSI, could be considered as a scaling factor

to make Q, appear as a typical development magnitude for the total

development size. (Remember the MMi value only included effort for a

block change, not an entire development.) In order to correlate these

points linearly (no exponents), equation 4.6 can be transformed with a

logarithmic function to produce equation 4.7.

4.17

log(a) +b*1og(KDSI) =og(Q) Eq. 4.7

Equation 4.7, in the form of a line, permitted a least squares regression to

a set of data points. The results of this regression were values for a and b

which describe the line that best predicts a Q value (effort) given a KDSI

value (size).

The continuation of the calibration process included building

calibration equations similar to those from Chapter II (equation 2.14) to

arrive at equation 4.8. (Remember that Q contains BCT.)

a0 =n
n

a, = E iog(KDSI),

5=1
n

a2= E [Iog(KDSli)]2 Eq. 4.8i=1Eq4.

n
do= log(Qi)

i=1
n

d,= E log(Q5)log(KDSI),
i=1

where ao = the number of data points (block changes)
a,, a2 = temporary variables for future equations
d., d, = temporary variables for future equations

Next, equation 2.15 can be applied to calculate a and b.

log(a) = a2d0 -ald,
2

aba2 -a1 Eq. 4.9

b= a•..d.-a~do
2

aoa2-a1

4.18

From a mathematical standpoint, equations 4.8 and 4.9 were similar

to the COCOMO calibration equations from Chapter II and were

straightforward to calculate. Keeping the exponential form of Boehm's

equations, these equations captured a relationship between the size of the

baseline code (KDSI) and the size of the change being made (EDSI). This

relationship implied that supporting a given number of DSI in a large

program required more effort than supporting the same number of DSI in

a small program.

Interpreting the meaning of this support calibration depended on

the data used to calibrate the model. If data was from a single PDSS

lifecycle, then the calibration would capture the long-term, stable

characteristics within that lifecycle. We labeled this case a horizontal

calibration. During a development time frame, this type of calibration

would be useful for predicting total lifecycle cost from equations calibrated

to previous support lifecycles. During a support time frame, this type of

calibration would be useful for predicting the next block change from

equations calibrated to previous block changes. However, these calibration

techniques might be inappropriate if the attribute adjustment factors did

not follow a bath-tub curve. This last scenario may be better suited for the

° case we labeled as vertical calibration.

Vertical calibration uses data from the ith block change cycle from

different software products for calibration. This calibration could capture

common characteristics across similar systems at the ith block change and,

4.19

presumably, could be used for predicting the i'h block change cost of a

similar system. Vertical calibration is equivalent to calibrating the

development equation using development data because the historical data

comes from different software systems. However, there is no

developmental equivalent of horizontal calibration.

Which calibration works the best for a given scenario? There was

insufficient time or data to experiment with horizontal versus vertical

calibration. However, given sufficient data, this comparison could be

accomplished using Hypothesis 2 (functional calibration of existing models)

methodology and the model comparison methodology.

In an attempt to validate the calibration algorithm, we entered

Boehm's database (Boehm:496) into the prototype and calibrated each

mode. A re-derivation of the coefficient and exponent values for all three

COCOMO modes was expected. However, as shown in Table 4.2, the

results did not duplicate the coefficient or exponent for the organic and

semi-detached modes. The embedded mode values were much closer.

Table 4.2

Calibration Comparison

Mode Boehm Parameters Prototype Parameters

Organic 3.2 1.05 4.3000 0.9337

Semi-detached 3.0 1.12 3.1855 1.1033

Embedded 2.8 1.20 2.7838 1.2090

All data - - 2.8309 1.1581

4.20

One possible reason for the differences shown in Table 4.2 could be

rounding or truncation of the database numbers published in Boehm's

book. For example, project numbers (PN) 4, 8, 14, 16, 20, 24, 31, 33, 34,

and 35 had adjustment factor products (H) more than 1% different than

the actual product of the adjustment factors (LANG through RVOL)

(Boehm:496). Although the difference seemed small, these differences

were well within the resolution of the published numbers. The different

results could also be a result of Boehm adjusting the coefficients and

exponents based on his personal knowledge and experience.

Data

In order to calibrate the model equations, we attempted to obtain

actual historical data from several aircraft support lifecycles. The data

collection efforts began in October 1992 by contacting representatives from

each of the combat aircraft listed in Chapter I (page 1.12). The initial

contacts, from the System Project Offices (SPOs) at Wright-Patterson AFB.

lead us to the Air Logistics Centers at Warner-Robins, Ogden, Oklahoma

City, and Sacramento. Except for Warner-Robbins, we established good

contacts at the ALCs, mailed to them our data forms (see Appendix B),

and received a 75% response rate against our targeted platforms. The

forms were mailed to ALC engineers involved in software support

management for the F-16, the B-52, the F-111, and the B-1. We received

no response for the B-1 but received an unsolicited response for the E-3.

4.21

Data CoUectio. Conversations with the ALC contacts indicated

that the bulk of the needed data resided in local databases. Despite these

promising beginnings, the data received was surprising. Given the slow

response time and the sparseness of data, the local databases apparently

were not readily accessible or useable and did not contain the needed data.

Eleven data points were received, but only four were useful.

Table 4.3 is a summary of the change size/effort data received. The

data points are shown in random order and are labeled A - K.

Table 4.3

Actual Data

LABEL SLOC SLOC AT MANHOURS DURATION
CHANGED START OF (MONTHS)

CYCLE

A not available not available 33,405' 13'

B 32,300 >500,000 19,500 12

C2 0 13,400 2,976 16

D 13,000 not available 17,580 12

E2 600 13,000 1,275 11

F 36,626 not available 414,484 29

G2 250 10,000 3,000 11

H not available not available 27,6221 12'

I not available not available 10,175' 81

j 2 20 41,000 2,325 11

K 31,888 not available 398,105 43'

=

Estimated data not actual.

2 Usable data points.

4.22

Since some participants requested that their data not be traceable to them.

the original data sheets were not printed in this thesis.

Only four of the eleven data points contained suitable size and effort

information. Unfortunately, four data points were insufficient to validate

Hypothesis 1 (functional bottom-up construction of a software cost

estimation model) or Hypothesis 2 (functional top-down calibration of a

statistically-based software cost estimation model). In most cases, sample

sizes of at least 10 or more are necessary to obtain meaningful statistical

confidence intervals and to evaluate the statistical measures in Chapter

III. Obtaining larger samples required generating a sample database.

The last historical data came in May 1993. At that time, we stopped

trying to collect additional data to validate our hypotheses and redirected

our efforts toward generating sample data to demonstrate the hypotheses.

Data Generation. To generate realistic data for the support model,

we invoked the model itself. The model, an enhanced adaptation of

Boehm's COCOMO maintenance model, could be considered a

mathematical function with multiple inputs (size and attribute factors)

and a single output (block change effort). The basic concept was to

generate a perfect set of output-input pairs and then add a known

variation onto the effort. The resulting fictional sample could then be used

to demonstrate both hypotheses.

Starting with the basic concept, we programmed a software module

that used the our support equations to generate random data points. The

4.23

first step was to generate values simulating the result of a random

development product. This was equivalent to generating all the values for

the right-hand side of the intermediate COCOMO maintenance equation

discussed in Chapter II (equation 2.11). The desired effort-size

relationship was the basis for selecting values for a coefficient, a, and an

exponent, b. Next, a random number function produced a development

product size, KDSI, and each of the adjustment attributes, Ci. The

prototype calculated three temporal effects, LE, ME, and TE, based on the

block change number and then scaled the AEXP, LEXP, STOR, and TIME

adjustment attributes. After scaling, the prototype applied three

percentages, representing the size of added, modified, and deleted code for

a block change, to the KDSI size to produce a block change size in units of

KDSI. The model then weighted these three sizes according to equation

4.1 to arrive at EDSI. Next, dividing EDSI by KDSI produced BCT. At

this point, all the values required for the right-hand side of equation 4.5

were calculated, so the prototype calculated the MM, labeled MM,..m,,,, for

the left-hand side of the equation.

By calculating an effort for each set of inputs associated with a

block ch.ange, the prototype completed the first half of the basic concept,

generating a perfect set of output-input pairs. For the second half of the

basic concept, adding a known variation onto the efforts, the prototype

applied a random number function. The function accepted the mean and

standard deviation of a desired normal distribution and returned an

-4.24

appropriate random deviate. A mean of zero for all deviate calculations

insured an even spread of positive and negative deviate values. Our first

inclination was to add the resulting deviate directly to the estimated block

change effort, but we realized that adding deviates to effort in the

exponential domain was wrong. Since calibration is based upon a linear

regression in the logarithmic domain, the perfect input-output pairs had to

be converted to the logarithmic domain (as shown by equation 4.10) before

adding the deviates.

In(MM•,,.)=In(BCT)+In(a)+b*ln(KDSI)+,ln([I) Eq. 4.10

After generating a normally-distributed random deviate, the prototype

added the deviate to the converted block change effort. In a sense, adding

the random deviate is like adding noise to a perfect block change effort in

order to introduce some realism. The resulting effort was labeled

MMgulated as shown in equation 4.11.

ln(MM~j.,j) =In(MM~,td) +noise Eq 4.11

Finally, the prototype model transformed the randomiLed effort back to the

exponential domain by taking the inverse of the natural logarithm (e).

The generated data could now be treated as historical data for the

calibration and evaluation of the model.

4.25

Dnmjnstration

Using the data generation methodology, the prototype model created

data to demonstrate both hypotheses. By programming the methodology

into software using the Visual Basic language, the model created the data

sets printed in Appendix F. The data requirements of the hypotheses were

different and necessitated two different databases. The simplest database

supported the second hypothesis, functional calibra',ion. The more complex

database supported the first hypothesis, construction of a bottom-up cost

model. The following description for each database generation begins with

the Hypothesis 2 (functional calibration) database generation.

Hypothesis 2. The functional calibration hypothesis was

demonstrated using families of data points with each family member

generated from the same coefficient/exponent combination. Using the

Create Database function in the software, the prototype generated five

families of 20 data points each. Each family had a different

coefficient/exponent combination. By selecting a family or group of

families, we were able to simulate how functional calibration might

improve software effort estimation and demonstrate the model comparison

methodology described in Chapter III.

The prototype constructed the composite database of block change

families with inputs shown in Table 4.4.

4.26

Table 4.4

Input Parametem for Composite Database

Parameter Value

Number of Block Changes per Category 20

Development KDSI Size 100

Adjustment Factor Standard Deviation 0.17

Percent Added 6
Code Affected

per Block Change Percent Modified 10

Percent Deleted 2

Percent Std Dev 0.3

Coefficient 2.40
Communication

Identification Exponent 1.05

Effort Std Dev 0.4

Coefficient 2.70
Navigation Exponent 1.16

Effort Std Dev 0.4

Coefficient 2.70
Core

Avionics Exponent 1.16

Effort Std Dev 0.4

Coefficient 3.10
Electronic
Combat Exponent 1.28

Effort Std Dev 3

Coefficient 3.20
Offensive
Sensors Exponent 1.36

Effort Std Dev 0.4

Note that Table 4.4 navigation and core avionics categories were set to the

same base equation (coefficient and exponent) and that the standard

deviation for the electronic combat category was much higher than the

4.27

other categories. After accepting data according to the inputs in Table 4.4,

the prototype produced the data shown in Figure 4.3.

*8

601.9--

526.6- + C/ID

451.4-
x NAV

376.2

MM 300.9 -
A CORE

225.7-

150.5- 0 E C

75..2--C

0. ++ C-OFF-24 - 6 10

Size in EDSI

Figure 4.3 - Composite Database

The data in Figure 4.3 had many sources of variation. The first source of

variation came from the attribute adjustment factors, which accounted for

a large portion of the total variation. The second source of variation came

from random proportions of the block change code additions, modifications,

and deletions. The last source of variation came from the effort standard

deviation assigned to each category. The lone data point from the

electronic combat (EC) category was the result of the high variation

assigned to this category.

When the variation from the attribute adjustment factors was

removed, the prototype produced a normalized database. With the product

4.28

of the adjustment factors (11) divided out (normalizing), the underlying

relations of the data were much easier to see. Figure 4.4 shows the data

from Figure 4.3 after normalization.

601.9

526.6- + C/ID

451.4

NAV
376.2-

MM 300.9
.& CORE

225.7

150.5 , E C

75.2T c []f •- ©,

0.0 10 ~OFF

Size in EDSI

Figure 4.4 - Normalized Composite Database

Notice that many of the data points if Figure 4.4 have aligned along

imaginary lines. We exploited this tendency by separating out these

points and recalibrating to only these points. Also, many of the data

points have lower effort values because they have a total product

adjustment (11) greater than 1.0. To compensate for the change in scale,

the prototype enlarged the data scale by reducing the maximum plot

magnitude of the y-axis to 150 resulting in Figure 4.5.

4.29

150.0--

131.3- + CAD

112.5- ¢

x• NAV -C

93.8-

MM 75.0 00 A CORE

56.3--

37.5 0 . >EC

.8- s-,.4 KY +
18.8- "• • 4.^'�0 OFF++

0.01 10- i '

Size in EDSI

Figure 4.5 - Zoomed and Normalized Composite Database

Figure 4.5 shows the grouping or family relationship more clearly than

Figure 4.4 does. The separate families of categories reflect the

stratification of the data.

If the data were separated into the different categories and plotted,

estimators could easily spot the multiple stratifications. But what if all

the data were assumed to be in the same category? If this were true,

estimators might be inclined to see a single exponential relationship

instead of multiple ones, especially if the variance (spread) of each

category was larger. Without further examination, estimators could

calibrate the entire set of data and produce a single coefficient and

exponent pair for a single model. Calibration of the entire data set yielded

a coefficient of 2.43 and an exponent of 1.23. Although an estimation

model with these parameters might not account for each of the separate

4.30

data categories, the model would still estimate more accurately than a

model that was not calibrated to the data set. Table 4.5 contains the

results of a comparison of the REVIC embedded mode model (a = 3.312 &

b = 1.20) and a model using the calibrated parameters.

Table 4.5

Statistical Evaluation of Calibration Source

Parameter R2 RRMS Avg Predict %
Source MRE Value % Improve

REVIC 0.7906 1.176 32.81 12.0 -

Data Calibration 0.8072 1.175 28.54 35.0 68%

The results in Table 4.5 demonstrated that estimating effort from

calibrated models could be more accurate than estimating from a model

that is uncalibrated. In fact, if the calibration is performed properly and

the calibration data adequately represents the estimation environment, a

calibrated model should always estimate more accurately than the same

uncalibrated one. Thus, any model that uses statistical correlation can be

improved by calibration.

By dividing the data into functional categories, estimators could

obtain more accurate coefficient/exponent pairs. For example, calibrating

the communication-identification category yielded a coefficient of 1.37 and

an exponent of 1.18 while calibrating the offensive sensor category yielded

4.31

a coefficient of 2.97 and exponent of 1.39'. These values were not the

same as those for the entire data set. Applying each of the evaluation

measurements from Chapter III produced the results printed in Table 4.6.

Table 4.6

Statistical Evaluation of Categorical Calibration

Calibration R2 RRMS Avg Predict %
Source MRE Value % Improve

Entire Database 0.8072 1.175 28.54 35.0

Database

Comm Database 0.5236 1.506 26.86 0.0 -
ID

Category 0.9763 0.096 1.79 80.0 100.0

Nav Database 0.9110 0.351 9.58 75.0 -
Sensors

Category 0.9148 0.113 2.96 90.0 70.0

Core Database 0.9310 0.257 7.25 70.0 -
Avionics

Category 0.9512 0.15 2.74 90.0 80.0

Elect Database 0.6790 1.748 44.89 25.0 -

Combat
Category 0.7109 1.630 37.63 50.0 60.0

Offensive Database 0.6447 0.740 54.10 5.0 -
Sensors

Category 0.9785 0.137 9.06 75.0 95.0

Table 4.6 revealed the potential improvement in all of the

measurements by calibrating to a functional data set. Categories at the

edges of the data set, such as communication-identification and offensive

sensors, did show a pronounced improvement while other categories in the

central area of the whole data set did not show as much improvement.

I These values are not the same as the input parameters because of the effort variability introduced when

generating the data points.

4.32

After separating the categories, graphing the families, and

evaluating the statistics, it was an easy chore to determine where the

improvements were. But what about the areas where there were no
t.

improvements? Data collection data for analysis required much effort, so

avoiding data collection for any area should save effort. According to the

graph of the data (Figure 4.5), the navigation and core avionics functions

seemed to overlap closely. Comparing the navigation and core avionics

calibration results with other categories in Table 4.7 provided some

additional clues.

Table 4.7

Category Calibration Results

Category Coefficient Exponent

Comm / ID 1.3689 1.1845

Nav Sensors 2.4279 1.1918

Core Avionics 2.3197 1.1923

Elect Combat 1.7652 1.3969

Off Sensors 2.9665 1.3876

Entire Database 2.4291 1.2278

Table 4.7 confirmed that the coefficients and exponents of the navigation

and core avionics categories were close to each other. Therefore, it made

sense not to collect data for these two categories separately but to combine

them into one group with a single calibration. Calibrating these two

categories together as one category produced a coefficient of 2.3925 and an

exponent of 1.1898. Neither of these new values were significantly

4.33

different from the previous values, so treating both categories as one would

not greatly affect the accuracy of any predictions for block changes in these

categories. Of course, this prediction assumed that the future behavior of

these categories would follow the past performance. This may or may not

be true, but an informed guess should be better than an ignorant one.

Another category which would probably benefit little from special

calibration attention was electronic combat. Because the variability of this

category was high, the category was naturally difficult to estimate.

Collecting extra data to enable estimators to calibrate a new parameter

pair would probably be less helpful than collecting extra data on a more

promising category such as communication-identification. The calibration

from the entire data set predicted almost as well as the functional

calibration for the electronic combat category.

For the second hypothesis of functional calibration, we have

demonstrated the main benefit of producing new prediction relationships

based upon a selected subset of data. The subset could be an entire group

of data such as avionics or subset families of a group. In either case, the

main benefit would be improved prediction accuracy. The generated

database separated a fictional database into five functional categories.

The communication-identification and offensive sensors calibrations offered

the most promising improvements and warranted their own calibration

curves. On the other hand, the navigation, core avionics, and electronic

4.34

combat categories demonstrated less potential for improved accuracy and

might be better treated as a aingle group.

Hypothesis 1. Functional calibration for the second hypothesis was

not the only way to demonstrate prediction accuracy improvements. By
p4

generating data that fit the first hypothesis, construction of a bottom-up

cost model, we demonstrated another possible improvement. Creating a

database for the first hypothesis required a series of block changes for a

lifecycle. Each lifecycle had to mirror the temporal changes suggested

within the literature review. The concept of generating a series of data

points was similar to the concept used to create a single data point. The

prototype determined the effort for a particular block change size and then

added some random deviation. The wrinkle this time was to change the

support effort to match the bath-tub curve espoused in the literature.

Recall from Chapter II the four temporal effects which impacted the

size/effort relationship and made the bath-tub curve. The prototype

modeled the memory effect, throughput effect, and the learning effect but

discarded the entropy effect because there were no quantifiable

relationships for entropy. The bath-tub shaped lifecycle came entirely

from the first three temporal effects.

The prototype constructed a series database with the inputs shown

in Table 4.8.

4.35

Table 4.8

Input Parameters for Series Database

Parameter Value

Number of Block Changes 20

Development Size in KDSI 100

Development Memory Utilization Percentage 50.0

Development Throughput Utilization Percentage 50.0

Effort Standard Deviation 2.0

Adjustment Factor Standard Deviation 0.17

Prediction Coefficient 2.80
Parameters

Exponent 1.20

% Added 5.0
Percentages of Total Size
for EDSI calculation % Modified 10.0

% Deleted 2.0

% Standard Deviation 0.3

We selected the input values in order to generate a data set that could

demonstrate the effects discussed in the literature review. The resulting

data can be found in Appendix F and in Figure 4.6.

3W0

250

200

MM 150
6 CORE

100

50

0 10 15 2

Block Change Number

Figure 4.6 - Series Block Change Database

4.36

The most noteworthy characteristic of this data was the initial decrease in

effort during the first six block changes followed by an increase in effort

towards.the later block changes. By normalizing the data to remove the

variation induced by changing adjustment factors, the prototype more

clearly displayed the temporal effects in Figure 4.7.

250-

MM150- A.A

A ~ CORtE

too
50ý

0
0 to 10 2D

Block Change Number

Figure 4.7 - Normalized Series Block Change Database

Figure 4.7 demonstrated what happened to avionics support effort as the

learning effect died out and was overtaken by the effects of depleting the

remaining throughput and memory. The effort for the last block change

was more than double the effort from the first block change. If the

temporal effects were accurately modeled, then it was easy to understand

why models which don't include these effects could be less accurate. A

model that simply assumed a constant level of effort could not account for

learning or any effect of growth.

4.37

Although the data in Figure 4.6 does not deplete all of the

remaining memory or throughput, a data set which did approach the 100%

limits demonstrated the value of controlling growth. By adjusting the

percent added code from 5% to 6% and holding the other inputs constant,

the prototype demonstrated the growth effects as graphed in Figure 4.7.

lt

MM

01
0 to 15 2

Black Change Number

Figure 4.8 - Support Data at 6% Added Code

The effort leveling during the last three block changes demonstrated the

effect of memory and throughput utilization approaching 100%. Operating

in this area is very costly. Figure 4.9 disPlays the memory utilization for

separate examination.

BID

60
2

Mem %
CR

40

20

0)

Block Change Number

Figure 4.9 - Memory Utilization Growth

4.38

The memory utilization grew steadily until reaching about 95% where it

began to taper. The throughput utilization exhibited a similar growth

pattern. Although the consumption of these two resources significantly

altered the later portions of this support lifecycle, the high effort was

partially offset by the learning which occurred during the early portion of

the lifecycle. Figure 4.10 displayed the values for the language experience

(LEXP) adjustment factors as altered by the learning effect.

!.0-

0.8-

0.6-
LEXP

L% CORE

0.4-

0.2-

0~0 3 Jo 15 20

Block Change Number

Figure 4.10 - Learning Effect for Language Experience

The learning effect was manifested only during the first six block changes,

and after that point, it did not help reduce the require effort. Since all

three temporal effects influenced effort by altering adjustment factors, it

was worthwhile to examine the total contribution of the temporal effects

by graphing the adjustment factor products (-) for successive block

changes. The products are graphed in Figure 4.11.

4.39

2.0

P! 1
PI 'K COME

1.0

0.10 N 2

Block Change Number

Figure 4.11 - Block Change Adjustment Products

The shape of Figure 4.11 was the same shape of a graph of normalized

efforts. This match was not surprising since the change in support effort

came entirely through the change in adjustment factors.

After reviewing the results of the software, we concluded the

prototype model was an excellent tool to demonstrate the hypotheses.

Although actual data would have enabled the software to validate or

disprove the relationships, the prototype demonstrated a way and provided

a tool for future researchers to make these conclusions.

REVIC/Protoype Model Comparison

Despite the utility of the prototype in demonstrating the hypotheses,

we also compared the order of magnitudes of the effort predictions from

the model against well-established models. Since the prototype and

REVIC models are both adaptations of the COCOMO model, it made sense

to compare the outputs from the REVIC model, the COCOMO model and

the prototype model. The comparison expanded to include the SASET and

4.40

SEER models because those models were readily available. The

comparison was simplified by constraining all the adjustment factors in

the COCOMO-based modela to nominal values (1.0). The inputs of the

other models were also nominalized to the extent possible. Nominalizing

the model permitted comparing of the results and avoided accounting for

model-specific differences. Nominalization also reduced each of the

COCOMO-based models to forms similar to the basic COCOMO model

presented in Chapter II. The comparison results are shown in Table 4.9.

Table 4.9

Support Model Comparisons

REVIC COCOMO SASET SEER Proto Proto

Block 15 15 15 15 15 15
Changes

Devel 100 100 100 100 100 100

Inputs Size KDSI KDSI KDSI KDSI KDSI KDSI

Block 10% 10% 10% 10% 0% add 6% add
Change ACT ACT ACT ACT 20% md 12% md

Size 0% del 2% del

Outputs Effort
1 (MM) 124.8 83.19 63.72 393.84 84.9 84.9
2 108.2 83.19 54.12 243.36 65.4 68.6
3 95.7 46.2 167.78 56.2 61.8
4 83.2 37.56 167.78 50.5 58.1
5 31.44 46.4 56.0
6 28.8 43.3 54.9
7 26.16 43.3 57.5
8 22.68 67.9

13 8.76 146.7
14 6.12 171.1
15 83.2 83.19 3.48 167.78 43.3 199.6

4.41

The comparison results printed in Table 4.9 indicated that the prototype

model predicted efforts that were neither the highest nor the lowest of the

well-established models. Thus, the prototype generated effort values

within an order of magnitude of the other models.

Comidusion

Although we would have preferred using actual data, we

accomplished all of the objectives using generated data. Demonstration of

Hypothesis 1 began by modeling the current block change process using

object oriented design techniques. The block change process model and the

literature review provided the foundations for creating a software

computer model. The prototype demonstrated the improved accuracy of a

bath-tub shaped series of block changes and an order of magnitude

accuracy compared to COCOMO, REVIC, SASET, and SEER. These

actions satisfied the first three objectives for Hypothesis 1 as stated in

Chapter I.

We also achieved the first objective for Hypothesis 2 as stated in

Chapter I. The prototype demonstrated the improved accuracy of

functionally calibrating software support estimation models. The

remaining objectives for both hypotheses are recommendations that are

covered in the next chapter.

Lack of data was an unfortseen obstacle that we overcame with the

prototype by generating fictional data. Actual data existed but not in a

4.42

readily accessible form. The lack of data forced a deviation from the

original concept of validating the model to demonstrating the prototype.

4.43

V. Conclusions & Recommendations

Chapter Overview

In this chapter, we present conclusions that were supported by our

research. Also presented are recommendations for improving software

support estimation. The conclusions and recommendations are grouped

according to the topics of data: Hypothesis 1 (functional model

development), Hypothesis 2 (functional calibration), and the model

comparison methodology. The chapter concludes by identifying other

topics for additional research.

Data

Conclusions. We were unable to find sufficient data through direct

collection and through literature research to confirm or refute the

hypotheses. However, our efforts supported two conclusions. The first

conclusion was that the efficiency of an SSA will not remain constant over

the PDSS lifecycle for aircraft avionics software. The second conclusion

was that a software support database needs to be constructed to help

study long-term SSA efficiency. Each conclusion is discussed below.

The nature of the software support process coupled with the

constraints imposed by a target computer suggested that a bath-tub

shaped curve existed which was not captured in REVIC, SEER, or SASET

maintenance models. However, the literature confirmed the existence of

5.1

this curve. There were four factors that affected the shape of this curve.

The first was a learning effect acquired through exposure to the software.

The second was simple size growth during the PDSS cycle. The third was

the loss of available memory and throughput as size increased. The fourth

was design entropy caused by repeated changes to the software. Further

research into each of these factors could lead to understanding the

temporal effects and to identifying any interdependencies.

The second conclusion was the need for a support database to

quantify the four temporal effects. A database is a prerequisite to support

model development and PDSS estimation improvements. The data

uncovered during the research was insufficient to validate the hypotheses

and forced the generation of sample data. Until sufficient data is collected

for analysis, no further progress can be made on either hypothesis, nor can

an evaluation of the existing models be accomplished. The specific

attributes of the database are discussed in the next section.

Recxrmendations. Building an adequate support database will be a

challenge. The database must have time series information on a sufficient

number of software projects to allow the revision and calibration of present

models to a support environment. The database must also contain high

quality information and requires a well-defined data collection plan that

must be strictly followed. Each database element must be precisely

defined to reduce confusion during collection and interpretation. Besides

these general characteristics, we made specific recommendations about

5.2

collecting size and adjustment factors. Size, the most important

parameter, will be discussed first.

Good size data is the cornerstone for a good PDSS database. As

mentioned in Chapter II, all the other factors simply adjusted the effort

estimate obtained from size. Support size was similar to development size,

but there were some key differences. Both support and development size

required a standard definition. It is not sufficient to simply ask for size in

SLOC, KDSI, function points, or any other size units without a standard

definition of the metric. Implied in this statement is a software language

dependency; the definition of size is likely to be highly language

dependent. However, the goal is to define the metric so that two different

estimators will generate the same size count for a given piece of software.

One solution would be to embed the sizing rules into a software tool and to

use it on each support tape entered into a PDSS database. This would

provide an accurate starting size for each block change. Now given the

starting size of a baseline, estimators could calculate the effort per EDSI

observed in the block change. At this point, the recommendations diverge

from sizing techniques common to development.

Support software size has an additional measurement, the size of

the changed code, that development size does not have. Software support

estimates should derive effort from the size of the changed code as well as

the total code size. A consistent way to measure the change size would be

to compare a baseline tape with a tape produced after a block change

5.3

cycle. All of the code that was added, deleted, or modified must be

counted. Again, the counting metrics must be defined clearly so they can

be applied uniformly. Of all the possible size measures, SLOC (or KDSI) is

a measure that is usually familiar to software engineers since they usually

work with lines of code (or source instructions). Therefore, we recommend

that a set of language-specific definitions for added, deleted, and modified

SLOC be created and codified into a standard software tool for measuring

the size of baseline code and for measuring changes to the code. Only size

measured by the standard tool should be allowed into the PDSS database.

Along with size data, adjustment factors need to be gathered to

account for other variables present in the block change. Until a better

support model is available, we do not recommend a standard set of

adjustment factors for data collection. In the mean time, collecting all of

the support adjustment factors from the Air Force recommended models

(REVIC, SASET, SEER, and PRICE-S) should suffice. We made no

conclusion which models or attributes to drop from the PDSS database.

However, three critical areas should be included in any database. As with

size, each of these areas needs a defined metric to ensure data consistency.

The first critical area is the experience of the analysis, design, and coding

team. The team size and average experience in months at the start of the

block change cycle should be part of the PDSS database. This information

is needed to study the learning effect.

5.4

The second critical area is the remaining memory and throughput.

Although measuring these attributes can be complex and highly machine

dependent, the important characteristic to capture is the designer's

perception of remaining memory and throughput. It is equally vital to

record any hardware changes that increase available memory and

throughput. Expressing the available memory and throughput as a

percentage is reasonable given the complexity of the measurements.

Even more complex to measure than remaining memory and

throughput is the third critical area, design entropy. Although all the

factors that contribute to design entropy unknown, one cure for design

entropy is to re-engineer the software (Sittenauer:7-10). Another less

drastic cure is to restructure the software (Corbi:294-306). Unfortunately,

no single metric existed that captured all of the software attributes that

restructuring and re-engineering restore. But there are many metrics that

can capture a subset of those attributes (Oman:337-344, Fenton: 150-259).

The question is which metrics capture design entropy with reasonable data

collection. We recommend that the PDSS database retain the baseline

code and documentation for each block change. We also recommend

further investigation into the nature and measurement of design entropy

to define a set of metrics for inclusion in a PDSS database.

A PDSS database is not the only method of researching maintenance

productivity over time. Further literature research into the learning

curve, memory/throughput effects, and design entropy effects may prove

5.5

fruitful. There may be other factors not identified in this thesis that

contribute to the bath-tub temporal effects.

Hypothesis 1: Functional Construction of a Software Estimation Model

Conclusions. Describing the block change process using software

design tools provided excellent results. The object model labeled the

agents involved in the PDSS environment while the functional model

described the subprocesses within the block change process. The graphic

nature of our object model allowed quick assignment of the COCOMO

effort adjustment factors to specific agents in the PDSS environment,

while the graphic nit, re of the functional model allowed rapid

identification and resolution of differences between block change process

descriptions. The result was a product that was traceable to MIL-HDBK-

347 and to previous work done by Sacramento ALC. The next task was to

functionally construct a software estimation model based on the block

change process described by the process model.

The concept of a functionally constructed software estimation

model, given a functional description of the process, is to estimate each

function (subprocess) individually and then sum the total. Once the block

change process was correctly depicted, the subprocesses best represented

by the COCOMO maintenance model were included in the prototype

software. The prototype included only the "develop changes" subprocess

because there was insufficient data to include other subprocesses.

5.6

Estimators in the field should included their own selection of subprocesses

based on the data available for calibration and for other estimation

methods (analogy or bottom-up). Having identified what part of the block

change process the prototype would address, we next manipulated the

COCOMO adjustment factors to mirror the bath-tub curve supported by

literature.

The software prototype successfully created a bath-tub curve over a

series of block changes. The fidelity and accuracy of the prototype

compared to an actual series of block changes was unknown. With no

usable data to test against the prototype, we could only assert that the

prototype represented the temporal effects of software support better than

the ACT based models of REVIC, SASET, and SEER did.

Recamendations. We have two recommendations regarding the

prototype model. The first is to validate and calibrate it with quality data

as soon as possible. This is necessary to both confirm the existence of the

bath-tub curve. Once the prototype is validated and calibrated, the second

recommendation is to prompt model designers to update the existing

support process models to incorporate a bath-tub curve.

Hypothesis 2: Functional Calibration to Improve Model Accuracy

Conclusions. Calibration of support (or development) estimation

models is essential. The closer the calibration data matches the expected

system, the closer the estimate should be. The importance of proper

5.7

calibration is under emphasized. Unfortunately, calibration for support

models is not as simple as calibration for development models.

Support model calibration models is feasible and can take two forms,

horizontal and vertical. Each form takes a different temporal slice of the

PDSS lifecycle. Horizontal calibration captures all of the long-term, stable

characteristics of a PDSS lifecycle. This is critical for estimators to

understand and is the key to identifying unique adjustment factors for an

SSA. Long-term calibration may alleviate the need for some of the

adjustment factors. Models do not need variables that account for

attributes which remain constant over the long-term. Vertical calibration

is similar to developmental calibration. Each uses the ith development

cycle from a number of systems to capture those processes common across

those systems for that particular cycle.

Recuarmendations. The first recommendation to include ease of

calibration as a criterion to judge estimation models. A model that cannot

be easily calibrated loses much of its utility. If a model can't be easily

calibrated, then the estimator must know what data was used to calibrate

the model originally and realize that estimating effort outside of this data

domain is likely to be inaccurate.

The second recommendation is to use models that can be calibrated

in a repeatable manner. One test of model calibration is to use the

calibration procedure with the original data to see if it is repeatable. If

5.8

the recalibrated model doesn't match the original, then there is a serious

problem that needs resolution before using the model.

The third recommendation is to avoid using a model without

understanding how it was calibrated and with what data. This

information is vital to understanding what bias might exist in an estimate.

This is a serious problem with proprietary models with no simple

solutions. However, a quality Air Force database can help solve this

problem. Given a quality database, we recommend calibration of a model

to that database prior to estimating, especially if the model's calibration

database is unknown to the estimator.

Our fourth recommendation is to train estimators. Estimators need

to be trained how to calibrate the models, especially if the models use a

complex calibration procedure. Again, a readily available database is

needed before training in model or else calibration will be ineffective.

Additional training on the nature of software, software metrics, and the

processes used to create software should help estimators create better

estimates. If nothing else, the training will help software engineers and

estimators communicate better to improve estimation.

The final recommendation centers is to exploit the PDSS database

when it becomes available. Long-term data from a PDSS database will

highlight factors that are best captured under calibration. Using analysis

of variance (ANOVA) techniques on all the factors should reveal those

adjustment factors that are sufficiently stable over time to be firmly

5.9

captured in calibration. This calibration should reduce the number of

variable factors that need to be maintained in the database.

Future Research Topics

The single most important research topic is block change size

estimation. Size is the driver of all the Air Force recommended models.

Further research could determine the proper weighting for changed lines,

added lines, and deleted lines to produce a support size with the highest

correlation to support effort. Researchers also need to investigate better

methods of size estimation in preparation for a block change since block

change efforts do not come from measured EDSI inputs but from estimate

EDSI inputs. Better effort estimates require adequate models and quality

size estimates.

Summary

While software support estimation is a fertile field for future

research, the key to future research is in creating a support database.

Once a large enough database is gathered, the current generation of

software support models can be calibrated and validated to specific

environments. Estimators can make further improvements to the current

estimation models for avionics software support by incorporating temporal

effects such as learning, size growth, memory/throughput growth, and

design entropy.

5.10

In this thesis, we reviewed the current literature dealing with

software cost estimation models and the software support environment.

We also presented methodologies to document the support process and to

compare software cost estimation models. Furthermore, we created a

software prototype that embodied the PDSS lifecycle as described in the

literature. The prototype generated data to demonstrate how current

software cost estimation models could be improved from two functional

points of view, functional bottom-up model design and functional top-down

model calibration. We demonstrated that both techniques can improve

cost estimation accuracy and provided recommendations for data collection,

model improvement, and future research.

5.11

Appendix A

Object Oriented Model Notation Summary

AI

A.1

Category

Notation Example

Ciass Name ECP
attribute I Cost
attribute 2 Class Sched (SCED)
attribute 3 Resources

Suaerclass Inheritance USr

Subclass 1 Subclass.2 *Field MX Flier
7u 1

Personnel

Multiplicity

(exactly one) ITaroe Comeer
Speed. TIME
Memory, STOR
VIRT

Multiplicity
Clss (zero or more) ChangeProblemt

Rewor
Size Estimate
Test Assets
Description
Priority

Asembv Css .Test Plan
Aggregation Test Schedule

Part-i-Class Part-2-Class Ground Test Flight Test

Plan
Plan

Figure A.I - Object Model Notation

A.2

Category

Notation Example

Input Approved ECP

do Process Proes D~evelopN•ame ChangesOutput
Test Tape

SOutput \C

Process Data Flow Process
Ou Between 4

Data Name Bessee Approved ECP

Ilnpu~t Develop

Process rChaenges

Name of Product
Data Store Baseline

Block)

Process Change
Name Access & Update (Process

Data Store N /

data Current Baseline

Data Product

Store Baseline

source data Actor Actor Objects Need Date USER

as source or
sink data sink of Data Block Operational Tape

/

Process Change/
Process

N

Figure A.2 - Functional Model Notation

A.3

Appendix B

Data Collection Forms

B.1

Oata Cobacflan Feral

Nane: Oorgava__on:

a) Block Change Idenfilkcoloon Nurnkm

b) ConNguraflon Eiernmt:

CSC Descrde Others below

C) Sofltare Language Percent of Tota Cod.
1) %
2) %,

3) %

d) Sytem rirm of Coade (SLOC)
Start Total SLOC

Answer foa tth
Black change onty, New SLOC

levkd SLOC

Deleted SLOC

End Totat SLOC

0) Totai Manhours for "s blacOk change _ _ _

f) Schedule
Start Date End Dote _ _ _

Miletone Date

B.2

g) Software Suport Enwonment (describe below or attach decption)

TOOLS:

DOCUMENTATION:

h) Team Experience (average in years) with:

The software

The documentation

The environment

The language

B.3

') Dgss~lorrof the softxwae Ajnctiorm (describe below or aflachi deecSftkn)

De.ctln of ch•nges (decrie below or a•tach descr-tlcr)

j) Target C muter Descnption (describe below or attach description)

Available Merrieo

(at start of change)

Available Throughput
(at start of change)

B.4

) Elthvvtio Methods
modeb

PEV1CYCOCOMO

ChdCk boX
SEER

PRICE S/PRICE SPA

Other Intarroation/GfloraI ConWfsnts

B.5

Appendix C

Prototype Source Code

C.1

Source Code for Prototype in Visual Basic Language.

Code for Globat.bas

'Enmierated Database type
Global Const UnknowlB 2 0
Global Const BoehaDB 2 1
Global Const SmpleOB= 2
Global Conat ThesisOB 3 3
Global Const CompThesisOB x 4

'Set up Enumeraated Values for YOata
'Only the thesis graph needs to use this
Global YPick As Integer
Global Const Executable Time 2 1
Global Conat Time Utit ; 2
Global Const Storage 2 3
Global Const Mem UtiL z 4
Global Const Pi iuLt z 5
Global Const AnalystExperience 6
Global Const Lang Experience = 7
Global Const Actual KDS! a 8
Global Const EquivaTent DSI z 9
Global Const ActualEffort z 10

Global Const FileGraph a 0

'Global Variables for Graph Axis Limits and Normalization Flag
'Should only be used by forms involved with graphing
'(I couldm't figure another way to pass these parameters.)
Global YHax As Single
Global YMin As Single
Global XHax As Single
Global XHin As Single
Global NormState As Integer
Global Const Norm On = 1
Global Const Norm-Off z 0

'Provide Global Variable to hold current open database filenme
'and Handle. Permits different menu items to use same database.
Global DBFileSpec As String
Global OBFileName As String
Global DBHandte As Integer
Global more As Integer 'flag stating if more records exist
Global DBType As Integer 'Enumerated Database Type
Global ErrHsg As String 'string for error mesaages

'Define Boehm's record structure from database
Type BoehmType

Num As Variant 'variant type permits testing of null values
Type As Variant
YEAR As Variant
LANGUAGE As Variant
RELY As Variant
DBSIZE As Variant
CPLX As Variant
EXTIME As Variant
STOR As Variant
VIRT As Variant
TURN As Variant
ACAP As Variant
AEXP As Variant
PCAP As Variant
VEXP As Variant
LEXP As Variant
HOOP As Variant
TOOL As Variant
SCED As Variant
RVOL As Variant
Pi As Variant
HODE As Variant
TOTKDSI As Variant

C.2

ADJKDSI As Variant
N)MEFFORT As Variant
ESTEFFORT As Variant
ACTEFFORT As Variant

End Type
Global BoehmRec As BoehmType
Global BoehmuandLe As Integer
Global Const BoehmROS z "(PROJ MNUI(V) PROJTYPE(V) YEAR(V) LANGUAGE(V) RELY(V) DBSIZE(V) CPLX(V)
EXTIHE(V) STOR(V) VIRT(V) TURN(V) ACAP(V) AEXP(V) PCAP(V) VEXP(V) LEXP(V) NODP(V) TOOL(V) SCED(V)
RVOLCV) PI(V) MOOE(V) TOTKDSI(V) ADJKDSI(V) MONEFFORT(V) ESTEFFORT(V) ACTEFFORT(V))"

'Define Short version of Beohm's type for creating sample databases
Type SampleType

Num As Variant variant type permits testing of numt values
Type As Variant
RELY As Variant
DOBSIZE As Variant
•PLX As Variant
EXT114E As Variant
STOR As Variant
VIRT As Variant
TURN As Variant
ACAP As Variant
AEXP As Variant
PCAP As Variant
VEXP As Variant
LEXP As Variant
HOOP As Variant
TOOL As Variant
SCED As Variant
RVOL As Variant
Pi As Variant
ACTKDSI As Variant
ACTEFFORT As Variant

End Type
Global SampleRec As SampleType
GLobal SampLeHandLe As Integer
Global Const SampLeROS = "(PROJ _UN(V) PROJTYPE(V) RELY(V) DBS1ZE(V) CPLX(V) EXTINE(V) STOR(V)
VIRT(V) TURN(V) ACAP(V) AEXPCV) PCAP(V) VEXP(V) LEXP(V) MODP(V; TOOL(V) SCED(V) RVOL(V) PI(V)
ACTKDSI(V) ACTEFFORT(V))"

'Define Thesis record Structure
Type ThesisType

MCNUN As Variant 'variant type permits testing of nutt values
CATEGORY As Variant
RELY As Variant
DBSIZE As Variant
CPLX As Variant
TINEUTIL As Variant
EXTINE As Variant
MEKJTIL As Variant
STOR As Variant
VIRT As Variant
TURN As Variant
ACAP As Variant
AEXP As Variant
PCAP As Variant
VEXP As Variant
LEXP As Variant
HOOP As Variant
TOOL As Variant
SCED As Variant
RVOL As Variant
Pi As Variant
ENTROPY As Variant
ACTKDSI As Variant
ADDKDSI As Variant
NODKDSI As VariAnt
DELKDSI As Variant
EDSI As Variant
ACTEFFORT As Variant

End Type
Global ThesisRec As ThesisType
Global ThesisHandte As Integer

C.3

Global Const ThesisRDS a "(BCNMU(V) CATEGORY(V) RELYCV) DBSIZE(V) CPLX(V) TIIEUTIL(V) EXTIME(V)
MEMUTIL(V) STOR(V) VIRT(V) TURN(V) ACAP(V) AEXP(V) PCAP(V) VEXP(V) LEXP(V) MODP(V) TOOL(V) SCED(V)
RVOLMV) PI(V) ENTROPY(V) ACTKDSI(V) ADOKDSI(V) NODKDSI(V) DELKDSI(V) EDSI(V) ACTEFFORT(V))

'Define BadThesis record Structure
Type OtdThesisType

BCNUI4 As Variant 'variant type permits testing of null values
CATEGORY As Variant
RELY As Variant
DBSIZE As Variant
CPLX As Variant
TINEUTIL As Variant
EXTI1E As Variant
MEMUTIL As Variant
STOR As Variant
VIRT As Variant
TURN As Variant
ACAP As Variant
AEXP As Variant
PCAP As Variant
VEXP As Variant
LEXP As Variant
HOOP As Variant
TOOL As Variant
SCED As Variant
RVOL As Variant
Pi As Variant
ENTROPY As Variant
ACTKDSI As Variant
ADDKDSI As Variant
MODKDSI As Variant
DELKDSI As Variant
ESDI As Variant
ACTEFFORT As Variant

End Type
GlobaL OtldThesisRec As OldThesisType
Global OidThesisHandte As Integer
GLobal Const OLdThesisRDS = "(BCNUN(V) CATEGORY(V) RELY(V) DBSIZE(V) CPLX(V) TINEUTIL(V) EXTINE(V)
MEMUTIL(V) STOR(V) VIRT(V) TURN(V) ACAP(V) AEXP(V) PCAP(V) VEXP(V) LEXP(V) NOOP(V) TOOL(V) SCED(V)
RVOLCV) PI(V) ENTROPY(V) ACTKDSI(V) ADDKDSI(V) MODKDSI(V) DELKDSI(V) ESDI(V) ACTEFFORT(V))"

Visual Basic global constant file. This file can be loaded
into a code module.

Some constants are commented out because they have
duplicates (e.g., NONE appears several places).

If you are updating a Visual Basic 1.0 program to run in
Visual Basic 2.0, you should replace your global constants
with the constants in this file. Note that True and False
are now built into Visual Basic so are no longer defined in
this file.

* General

* Clipboard formats
Global Const CF LINK = &HBFOO
Global Const CF-TEXT = 1
Global Const CF-BITMAP = 2
Global Const CFMETAFILE = 3
Global Const CF..IB = 8
Global Const CFPALETTE : 9

I DragOver
Global Gonst ENTER a 0
Global Const LEAVE = 1
Glohal Const OVER z 2

* Drag (controls)
GlobaL Const CANCEL = 0
Global Const BEGIN DRAG 1

C.4

GLobal Const END-DRAG : 2

Show parameters
GLobal Const MODAL 2 1
GlobaL Const NODELESS a 0

Arrange Method
* for NDI Forms
Global Const CASCADE a 0
Global Const TILE HORIZONTAL = 1
GLobaL Const TILE VERTICAL = 2
GlobaL Const ARRANGE ICONS = 3

IZOrder Method
GLobal Const BRINGTOFRONT 2 0
Global Const SENDTO6ACK x 7

I Key Codes
Global Const KEY LBUTTON = &H1
Global Const KEY RBUTTON = &H2
Global Const KEY CANCEL 2 &HW
Global Const KEY-MBUTTON a &H4 ' NOT contiguous with L & RBUTTON
GLobaL Const KEY-BACK = &H8
Global Const KEY TAB = &H9
GLobal Const KEY CLEAR 2 &HC
GLobal Const KEY-RETURN = &HD
GLobaL Const KEY SHIFT = &HWO
GLobaL Const KEY-CONTROL = &H11
Global Const KEY MENU 2 &H12
Global Const KEY-PAUSE = &H13
Global Const KEY CAPITAL = &H14
Global Const KEY ESCAPE = &H1B
Global Const KEY SPACE 2 &H20
Global Const KEY PRIOR = &H21
Global Const KEY-NEXT = &H22
Global Const KEY END = &H23
Global Const KEY HOME = &H24
Global Const KEY-LEFT 2 &H25
Global Const KEY UP = &H26
GLob&L Const KEY-RIGHT a &H27
Global Const KEY DOWN = &H28
GLobaL Const KEY-SELECT = &H29
Global Const KEY PRINT • &HWA
Global Const KEY EXECUTE 2 &H26
GLobal Const KEY SNAPSHOT a &H2C
Global Const KEY INSERT = &H2D
Global Const KEY DELETE = &HWE
GlobaL Const KEY-HELP = &H2F

KEY A thru KEY Z are the same as their ASCII equivalents: 'A' thru IZ'
KEY-O thru KEY-9 are the same as their ASCII equivalents: a0o thru '9'

GLobal Const KEY NUMPADO = &H60
Global Const KEY-NUMPADI = &H61
Global Const KEY-NUNPAD2 = &H62
GLobaL Const KEY-NUMPAD3 2 &H63
GlobaL Const KEY NUMPAD4 = &H64
Global Const KEY NUMPAD5 = &H65
Global Const KEY-NUMPAD6 = &H66
Global Const KEY-NUMPAD7 = &H67
Global Const KEY-NUMPAD8 = &H68
GLobaL Const KEY-NUMPAD4 = &H69
GlobaL Const KEY MULTIPLY = &H6A
Global Const KEY ADD = &H66
GLobaL Const KEY-SEPARATOR = &H6C
Global Const KEY-SUBTRACT = &H6D
Global Const KEY-DECIMAL &H6E
Global Const KEY DIVIDE = &H6F
Global Const KEY-F1 2 &HWO
Global Const KEY F2 = &H71
GLobaL Const KEY F3 = &H72
Global Const KEY F4 = &H73
Global Const KEY-F5 = &H74
GlobaL Const KEY-F6 = &H75

C.5

Global Const KEY F7 a U176
Global Conat KEYSF a 1147?
Global Const KEY F9 a 11H78
Global Const KEY FIO a U179
Global Corot KEY F11 a WHA
Globa(Conat KEY F12 a 11078
Global Const KEY P13 a &H7C
Global Const KEY F14 = 11170
Global Corot KEY F15 a WHE
Global Const KEY P16 a IH7F

Global Const KEY NIMLOCK 2 £W49

1Variant VarType tags

Global Const V EMPTY £0

Global Const V NULL I
Global Const V INTEGER x 2
Global Comet V LONG 2 3
Global Const V SINGLE =
Global Const VO'OUBLE a 5
Global Const V CURRENCY z 6
Global Corot V DATE a 7
Globa(Conet V STRING z 8

Event Parameters

ErrNum (LinkError)
Global Conet WRONG FORM4AT a 1
Global Comet ODE SOURCE CLOSED 26

Global Const TOO7MANY LINKS - 7
Global Comet DATA TRANiSFER FAILED =8

I QueryUnload
Global Const FORM CONTROLMENU 20

Global Const FORM CODE z 1
Global Comet APP UINDOWS = 2
Global Const APP TASKMANAGER =3

Global Conet FORM MDIFORM z 4

Properties

Colors
Global Const BLACK a £140&
Global Const RED = &HFF9
Global Const GREEN a 1FFOOI
Global Const YELLOW & HFFFFI
Global Const BLUE a IHFFOOOO
Global Comet MAGENTA = IHFFOOFF
Global Comet CYAN & HFFFFOO
Global Const WHITE a 11FFFFFF

I system colors
Global Const SCROLL BARS a 1148000000 Scroll-bars gray area.
Global Const DESKTOP z 1180000001 'Desktop.

Global Comet ACTI VE TITLE BAR = U180000002 'Active window caption.
Global Const INACTIVE TITUE BAR = 11480000003 Inactive window caption.
Global Comet MENU BAR7- U0H8000004 Menu background.
Globa[Comet WINDOW. BACKGROMN a 11H8O0000005 Window background.
Global Const WINDOW FRAME = 11480000006 Window frame.
Global Const MENU TEXT = 11480000007 Text in menus.
Global Const WINDOW TEXT = £1080000008 *Text in windows.
Global Const TITLE BAR TEXT U 180000009 Text in caption, size box, scrolL-bar arrow
box..
Global Const ACTIVE BORDER a 118000000A 'Active window border.
Global Const INACTIVE BORDER 2 11480000008 Inactive window border.
Global Const APPLICATION-WORKSPACE = IH8000000C *Background color of multiple document interface
(MDI) applications.
Global Const HIGHLIGHT = 1148000000 Items selected item in a control.
Global Const HIGHLIGHT TEXT a 91H8O00000E 'Text of item selected in a control.
Global Const BUTTON -FACE = £108000000F Face shading on command buttons.
Global Comet BUTTON SHADOW = 11480000010 Edge shading on command buttons.
Global Const GRAY TEXT x 1180000011 Grayed (disabled) text. This color is set to 0

C.6

if the current display driver does not support a solid gray color.

Global Const BUTTON TEXT a &H80000012 ' Text on push buttons.

* Enumerated Types

* Align (picture box)
Global Const NONE a 0
Global Const ALIGN TOP • 1
Global Const ALIGN-BOTTOM = 2

o ALignment
Global Const LEFT JUSTIFY a 0 ' 0 - Left Justify
Global Const RIGHT JUSTIFY 1 ' 1 - Right Justify
Global Const CENTER a 2 ' 2 - Center

I BorderStyLe (form)
'Global Const NONE = 0 ' 0 - None
Global Const FIXED SINGLE = 1 * 1 - Fixed Single
Global Const SIZABLE z 2 ' 2 - Sizable (Forms only)
Global Const FIXED DOUBLE = 3 ' - Fixed Double (Forms only)

I BorderStyte (Shape and Line)
'Global Const TRANSPARENT 0 '0 - Transparent
'Global Const SOLID 1 '1 - Solid
'Global Const DASH 3 2 1 2 - Dash
'Global Const DOT 3 '3 - Dot
'Global Const DASH-DOT x 4 ' 4 - Dash-Dot
'Global Const DASH DOT DOT = 5 ' 5 - Dash-Dot-Dot
'Global Const INSIDESOLID • 6 6 - Inside Solid

I MousePointer
Global Const DEFAULT a 0 0 - Default
Global Const ARROW = 1 1 - Arrow
Global Const CROSSHAIR = 2 2 - Cross
Global Const IBEAM = 3 3 - I-Beam
Global Const ICON POINTER : 4 4 - Icon
Global Const SIZE POINTER • 5 S - Size
Global Const SIZE NE SW z 6 6 - Size NE SW
Global Const SIZE NS = 7 7 - Size N S
Global Const SIZE M9_SE = 8 8 - Size MW SE
Global Const SIZE.WE = 9 9 - Size W E
Global Const UP ARROW = 10 10 - Up Arrow
Global Const HOURGLASS = 11 11 - Hourglass
Global Const NO-DROP a 12 12 - No drop

D DragMode
Global Const MANUAL = 0 ' 0 - Manual
Global Const AUTOMATIC = 1 ' 1 - Automatic

I DrawIode
Global Const BLACKNESS = 1 1 - Blackness
Global Const NOT MERGE PEN 2 2 - Not Merge Pen
Global Const MASi NOT PEN = 3 3 - Mask Not Pen
Global Const NOT COPY PEN = 4 4 - Not Copy Pen
Global Const MASK PEN-NOT : 5 5 - Mask Pen Not
Global Const INVERT = 6 6 - Invert
Global Const XORPEN a 7 7 -Xor Pen
Global Const NOT MASK PEN 8 8 - Not Mask Pen
Global Const MASK PEN- = 9 -Mask Pen
Global Const NOT XOR PEN = 10 10 - Not Xor Pen
Global Const NOP11 '11 - mop
Global Const MERGE NOT PEN = 12 12 - Merge Not Pen
Global Const COPY PEN = 13 13 - Copy Pen
Global Const MERGIE PEN NOT = 14 14 - Merge Pen Not
Global Const MERGE PEN = 15 15 - Merge Pen
Global Const WHITENESS = 16 16 - Whiteness

I DrawStyte
Global Const SOLID : 0 0 - Solid
Global Const DASH I I - Dash
Global Const DOT =2 2 - Dot
Global Const DASH-DOT • 3 3 - Dash-Dot
Global Const DASH DOT DOT = 4 4 - Dash-Dot-Dot
Global Coenst INVISIBLE = 5 5 - Invisible

C.7

Global Const INSIDE-SOLID = 6 ' 6 - Inside Solid

* FiLIStyLe
' Global Const SOLID= 0 0 - Solid
Global Const TRANSPARENT a 1 1 - Transparent
Global Const HORIZONTAL LINE - 2 2 - Horizontal Line
Global Const VERTICAL LTNE • 3 3 - Vertical Line
Global Const UUARD DTAGONAL - 4 4 - Upward Diagonal
Global Const DOWWARD DIAGONAL = 5 5 - Downward Diagonal
Global Const CROSS a 3 6 - Cross
Global Const DIAGONAL CROSS a 7 7 - Diagonal Cross

* LinkNode (forms and controls)
'Global Const NONE = ' 0 - None
Global Const LINK SOURCE a 1 ' 1 - Source (forms only)
Global Const LINK-AUTOMATIC z 1 * 1 - Automatic (controls only)
Global Const LINK-MANUAL z 2 ' 2 - Manual (controls only)
GLobal Const LINK-NOTIFY a 3 3 - Notify (controls only)

I LinkMode (kept for VB1.0 compatibility, use new constants instead)
Global Const HOT = 1 * 1 - Hot (controls only)
Global Const SERVER = 1 , 1 - Server (forms only)
Global Const COLD = 2 ' 2 - Cold (controls only)

I ScaleMode
Global Const USER = 0 0 - User
Global Consa TWIPS = 1 1 - Twip
Global Const POINTS - 2 2 - Point
Global Const PIXELS a 3 3 - Pixel
Global Const CHARACTERS = 4 4 - Character
Global Const INCHES = 5 5 - Inch
Global Const MILLIMETERS = 6 6 - Millimeter
Global Const CENTIMETERS = 7 7 - Centimeter

* ScrolLBar
* Global Const NONE = 0 ' 0 - None
Global Const HORIZONTAL = 1 I 1 - Horizontal
Global Const VERTICAL = 2 ' 2 - Vertical
Global Const BOTH = 3 3 - Both

I Shape
Global Const SHAPE RECTANGLE 0 0
Global Const SHAPE SQUARE = 1
Global Const SHAPE OVAL = 2
Global Const SHAPE CIRCLE = 3
Global Const SHAPE ROUNDED RECTANGLE = 4
Global Const SHAPEROUNDEDSQUARE = 5

, WindowState
Global Const NORMAL = 0 * 0 - Normal
Global Const NINIMiZED = 1 ' 1 - Minimized
Global Const MAXIMIZED = 2 2 - Maximized

I Check Value
Global Const UNCHECKED = 0 ' 0 - Unchecked
Global Const CHECKED 1 1 - Checked
Global Const GRAYED = 2 ' 2 - Grayed

I Shift parameter masks
Global Const SHIFT MASK = 1
Global Const CTRL MASK = 2
Global Const ALTMASK = 4

I Button parameter masks
Global Const LEFT BUTTON = 1
Global Const RIGHT BUTTON = 2
Global Const MIDDLE-BUTTON = 4

* Function Parameters
* MsgBox parameters
Global Const MB OK = 0 ' OK button only
Global Const MB-OKCANCEL = 1 OK and Cancel buttons
Global Const MB-ABORTRETRYIGNORE : 2 Abort, Retry, and Ignore buttons

C.8

GLobal Const MBYESNOCANCEL a 3 Yes, No, and Cancel buttons
Global Const MS YESNO a 4 Yes and No buttons
Global Const M-RETRYCANCEL = 5 Retry and Cancel buttons

Global Const MB ICONSTOP = 16 Critical message
Global Const MS ICONQUESTION - 32 warning query
GLobal Const Me ICONEXCLAMATION a 48 Warning message
Global Const M-ICONINFORMATION = 64 Information message

GLobal Const Me APPLMODAL = 0 Application Modal Message Box
GLobal Const M-DEFBUTTONI = 0 First button is default
Global Const MB-DEFBUITTON2 : 256 Second button is default
Global Const MB-OEFBUTTON3 = 512 Third button is default
Global Const MU-SYSTEMMODAL z 4096 'System Modal

I Ksg~ox return values
Global Conat IDOK = 1 OK button pressed
GlobaL Const IDCANCEL = 2 Cancel button pressed
GLobal Const IDABORT = 3 Abort button pressed
Global Const IDRETRY = 4 Retry button pressed
Global Const IDIGNORE a 5 Ignore button pressed
Global Const IDYES = 6 Yes button pressed
Gtobal Const IDNO 2 7 No button pressed

I SetAttr, Dir, GetAttr functions
Global Const ATTRNORMAL = 0
Global Const ATTR READONLY = 1
Global Const ATTR-HIDDEN = 2
Global Const ATTRSYSTEM a 4
Globat Const ATTR VOLUME = 8
Global Const ATTR-DIRECTORY = 16
Global Const ATTRARCHIVE = 32

'Grid
'CorALignment,FixedAtignment Properties
Global Const GRIDALIGNLEFT = 0
Global Const GRID ALIGNRIGHT I 1
Global Const GRID.ALIGNCENTER = 2

'FittstyLe Property
Global Const GRIDSINL''. x 0
Global Const GRID-REPEAT = 1

'OLE Client Control
'Action
Global Const OLE CREATE NEW = 0
Global Const OLE CREATE FROM FILE = 1
Global Const OLE-COPY = 4
Global Const OLE PASTE 2 5
Global Const OLE-UPDATE 6 6
Global Const OLE-ACTIVATE = 7
Global Const OLE-EXECUTE = 8
GLobal Const OLE CLOSE 9
Global Const OLE-DELETE = 10
Global Const OLE SAVE TO FILE = 11
Global Const OLE READ FROM FILE = 12
Global Const OLE"CONVERTTOTYPE = 13

'ServerType
Global Const OLE-LINKED = 0
Global Const OLE-EMBEDDED = 1
Global Const OLE-STATIC = 2

'UpdateOptions
Global Const OLE AUTOMATIC = 0
Global Const OLE FROZEN = 1
Global Const OLE MANUAL = 2

'Update Event Constants
Global Const OLE-CHANGED = 0
Global Const OLE SAVED : 1
Global Const OLE CLOSED = 2
Global Const OLE RELEASE = 3

C.9

.

* Table of Contents for Visual Basic Professional

* 1. 3-0 Controls
* C ~Fram/Panel/Opt ion/Check/Couoinad/Groiup Push)
* 2. Animated Sutton

3. Common Dialog Section
* 4. Gauge Control
* 5. Graph Control Section
* 6. Key Status Control
* 7. Spin Button

8 . M4CI Control (Multimedia)
* 9. Masked Edit Control
* 10. Coma Control-
* 11. ODIC Constants

'Common Dialog Control

'Action Property
Global Const DIG FILE OPEN = I
Global Const DIG FILE SAVE z 2
Global Const DLG COLOR a 3
Global Const DIG FONT =
Global Const DIG PRINT = 5
Global Const DIG HELP z6

'File Open/Save Dialog Flags
Global Const OFN-READONLY z I&HU
Global Const OFN-OVERURITEPROMPT z 1U29
Global Const OFW HIDEREADOWLY a W&14
Global Const OPHNMOCHANGEDIR x &H89
Global Const OFN SHOWHEIP = 111101
Global Const OFW NOVALIDATE a W11100
Global Conat OFN-ALLOWIIJLTISELECT 2 LH2009
Global Const OFN EXTENSIONDIFFERENT a WOO400
Global Const OFMNPATHMLJSTEXIST z UH800
Global Const OFN ILEMUSTEXIST a £101000&
Global Const OFN CREATEPRONPT z £120001
Global Const OFM SHAREAWARE a £U40001
Global Const OFN NOREADOWLYRETLUtN a LH80009

'Color Dialog Flags
Global Const CC-RGBINIT 1111
Global Const CC FULLOPEN l.H2L
Global Const CC PREVENTFULLOPEN = 1U49
Global Convst CC SHOWHEIP = 11H8

'Fonts Dialog Flags
Global Const CF SCREENFONTS = HU1
Global Const CF-PRINTERFONTS W £42
Global Const CF BOTH a 11H31
Global Const CF SHOWNELP = 11141
Global Const CF INITTOLOGFONTSTRUCT & H40&
Global Const CF-USESTYLE = ISO
Global Const CF EFFECTS * 111100
Global Const CF APPLY a WOOL0
Global Const CF ANSIONLY a WOO400
Global Const CF NOVECTORFONTS 2 914800
Global Const CF NOSIMJLATIONS a HIlOOGI
Global Const CF LIMITSIZE a 11120001
Global Const CF FIXEDPITCHOWLY z 9H4000&
Global Const CF WYSIWYG a 11180001 'must also have CF SCREENFONTS£
CF PR INTER FORTS
Global Const CF FORCEFONTEXIST z £1110000
Global Const CF SCALABLEONLY z &H20000
Global Const CF TTONLY a IHN40000
Global Const CF NOFACESEL = UH80000
Global Const CF MOSTYLESEL - 91110000
Global Const CF MOSIZESEL z 11H200000

'Printer Dialog Flags
Global Const PD ALLPAGES = 1&N01

c. 10

Global Const PD SELECTION a 1111
Global Const PD PAGENUN a 1U29
Global Const PC NOSELECT ION W 14£
Global Const PO-NOPAGENU14S UM118
Global Const PD COLLATE a M110
Global Const PD PRINTTOFILE U 1201
Global Const PD PRINTSETUP U I409
Global Conit PD NOMARNING a 1180
Global Const PD RETUINDC U 11009
Global Conat PD RETURNIC UH2009
Global Const PD RETURNOEFAULT a 111400
Global Canst PD S11OW1ELP x £&HU00

-Global Const PCDUSEDEV14WECOPIES z U140000
Global Const POD-DISABLEPRINTTOFILE a 1116000
Global Const PD HIDEPRINTTOFILE 11H100000

'Help Constants
Global Conat HELP-CONTEXT a 111 'Display topic in utTopic
Global Const HELP QUIT U 12 'Terminate help
Global Const HELP-INDEX W 11 'Display index
Global Const H1ELP-CONTENTS z 111
Global Const HELP 11ELPONHELP a £14 'Display help on using help
Global Const HELP SETINDEX = £115 'Set the current Index for multi index help
Global Const HELP SETCONTENTS a 115
Global Conat HELP CONTEXTPOPUP US11
Global Const HELP FORCEFILE z 81H9
Global Const HELP KEY z 11101 'Display topic for keyword in offabData
Global Const HELP COMMANO a 11102
Global Const HELP PARTIALKEY a 11105 'call the search engine in winhelp

'Error Constants
Global Const CDERR-DIALOGFAILURE 2 IFFFF

Global Const COERR GENERALCODES UO11
Global Const CDERR STRUCTSIZE = 1111
Global Const CDERR-INITIALIZATION a 11H2
Global Const COERRUMOTEMPLATE =113
Global Const CDERRN011INSTANCE z 1114
Global Const CDERR LOADSTRFAILIJRE = £145
Global Const CDERR FINDRESFAILURE z 11H6
Global Const CDERR LOADRESFAILURE a £11
Global Const CDERR LOCKRESFAILURE a US1
Global Const CDERR MERALLOCFAILURE 2 H19
Global Const CDERRNMENLOCKFAILURE a HAA
Global Const CDERR 140110K = 1119

'Added for CNOLG.VBX
Global Const CDERR CANCEL z INC
Global Const CDERR NOOLL x 111
Global Const CDERR ERRPROC z &HE
Global Const CDERR ALLOC 2 IF
Global Const CDERR HELP 2 £110

Global Const PDERR PRINTERCODES z WOO100
Global Const POERR SETUPFAILURE 2 111100
Global Const PDERR-PARSEFAILURE z £11002
Global Const POERR RETDEFFAILURE U 11003
Global Const PDERR LOADDRVFAILURE 1111004
Global Const PDERR GETDEVMCDEFAIL z H11105
Global Const PDERR tiIITFAILURE 2 111006
Global Const PDERRNCODEVICES = £11007
Global Const POERR NODEFAULTPRN = 111100
Global Const PDERR-DNDIIIIS14ATCH 2 U11009
Global Const POERR CREATEICFAILURE a 11110A

*Global Const POERR PRINTERNOTFOUND z 911100

Global Const CFERR CHOOSEFONTCODES a 111200
Global Const CFERR NOFONTS a U12001

Global Const FNERR FILENAMECCOES z 1113000
Global Const FNERR-SUBCLASSFAILURE z U13001
Global Const FNERR INVALIDFILENAME z U13002
Global Const FNERR-SUFFERTOOSMALL = MOM00

c. 11

Global Conat FREERRFINDREPLACECODES a £114000
Globe(Carat CC!.. CHOOSECOLORCODES a £115000

'Graph Control

'General
Global Const GNMOE a 0
Global Const GODEFAAJLT -0

Global Corot G OFF a0

Global Const 60W * 1

Global Const G-MONO *0
Global Const G COLOR 1

'Graph Types
Global Corost G PIE2D I
Global Conat G-PIE3O 2
Global Conat GSRAR2D *3
Global Const G BIAR3O 4
Global Const G-GANTT z 5
Global Const GULNE a 6
Global Const G-LOGLIN z 7
Global Const G-AREA a 8
Global Const G SCATTER z 9
Global Corot 6 POLAR a 10
Global Const G-HLC z 11

*Colors
Global Const GSBLACK a 0
Global Const G-BLUE x I
Global Const G-GREEN a 2
Global Const G-CYAN a 3
Global Conat G-RED a 4
Global Conat G-MAGENTA z 5
Global Const G-BROWN a 6
Global Const G LIGHT GRAY = 7
Global Conet G DARK GRAY a 8
Global Const G LIGHT ILUE a 9
Global Const G LIGHT GREEN a 10
Global Const G LIGHT CYAN a 11
Global Conat 6 LIGHT RED a 12
Global Const G LIGHT MAGENTA a13
Global Const G YELLOW a 14
Global Const G WHITE a 15
Global Const G-AUTOSW a 16

'Patterns
Global Conat G SOLID a 0
Global Const G HOLLOW z I
Global Const G HATCH1 = 2
Global Const G HATCH2 a 3
Global Const G HATCH3 a 4
Global Const G HATCH4 a 5
Global Conat G HATCH5 = 6
Global Const G HATCH6 a 7
Global Const G BITM4APi a 16
Global Const G BITNAP2 z 17
-Global Conat G-BITNAP3 z 18
Global Const G *IT1MAP4 = 19
Global Const G-BITMAP5 z 20
Global Const G SITKAP6 a 21
Global Const GBSIT1MAP7 z 22
Global Const G BITHAPS z 23
Global Conat G BITKAP9 z 24
Global Const GIBITMAP10 a 25
Global Const GRSITMAPII a 26
Global Const G-BITHAP12 a 27
Global Const GBSITMAP13 v 28
Global Const GBSIT1AP14 = 29
Global Const G SITMAP15 a 30
Global Conat G-BITMAP16 z 31

C. 12

Global Cons? G CROSS PLUS a 0
Global Corot CROSS TIMES - 1
Global Coro? 6 TRIAN-GLE UP -2
Global Corot G SOLID TRIANGLE UP a3

Global Corot G7TRIANGLE DOWN ; 4
Global Const G-SOLID TRIANGLE-DOWN - 5
Global Corot G:SW1ARf - 6
Global C-ont G SOLID SOUAE a7
Global Cans? G D IAMOND - 8
Global Can't dGSOLID-DIAMNOID 9

'Line Styles
'Global Cons? G50OLID a 0
Global Can't G FASH a1
Global Cans? GODOT a2

Global Carot GDASHOOT a 3
Global Can't G-DASHDOTDOT - 4

'Grids
Global Can't G HORIZONTAL = 1
Global Can't G VERTICAL a 2

'Statistics
Global Con'? G MEAN = 1
Global Cons? G HMIMAX z 2
Global Cons? G STD DEV a 4
Global Can't G BEST FIT - 8

'Data Arrays
Global Cons? G GRAPH DATA a 1
Global Cons? G COLOR DATA - 2
Global Cans? G EXTRA DATA a 3
Global Cons? G LABEL TEXT a 4
Global Cons? G LEGEND TEXT - 5
Global Cans? G PATTERN DATA a 6
Global Cons? G SYMBOL DATA - 7
Global Cons? G-XPOS DATA a 8
Global Con'? G-ALL.OATA a9

'Draw Mode
Global Con'? G NOACTION a0
Global Cons? 6 CLEAR a 1
Global Cons? GODRAW a 2
Global Cons? GSLIT a 3
Global Cons? GCOPY z 4
Global Cons? 6 PRINT = 5
Global Cons? d WRITE = 6

'Print options
Global Cons? G-BORDER z2

'Pie Chart Options
Global Cons? G NO LINES a 1
Global Cons? G COLO0RED a 2
Global Cons? G-PERCENTS a 4

'Bar Char? Options
'Global Cons? G HORIZONTAL a 1
Global Can't G-STACKED z 2
Global Cons? G PERCENTAGE x 4
Global Cons? G-ZCLUSTERED a 6

'Gantt Chart Options
Global Cons? G SPACED BARS a 1

'Line/Polar Chart options
Global Cons? G-SYMBOLS = 1
Global Cons? G STICKS a2

*Global Cons? G LINES =4

'Area Chart Options
Global Cons? G-ASSOLUTE a 1
Global Cans? G-PERCENT z 2

C. 13

'HLC Chart Options
Global Conat G NO CLOSE a 1
Global Const G-NO-NIGHLOW a 2

AgiLity/Vi trappate error codes
* Updated: 07-Sep-92

Global Cornt AGIE DU OPEN a 4100
Global Const AGIEDiNOTOPEN * 4101
Globs(Const AGIE NOTEXIST = 4102
Global Const AGIE NOUPOATE a 4103
Global Conrt AGIE-NODELETE - 4104
Global Conrt AGIE NOADO * 4105
Global Const AGIE BADFILE = 4106
Global Const AGIE-NOCURPOS - 4107
Global Const AGIE BOUNDS a 4108
Global Const AGIE ROWNIM a 4109
Global Const AGIE MBASORT a 4110
Globat Const AGIE)BADOUERY a 4111
Global Const AGIE BADPARAM a 4112
Global Const AGIE-NOPERMIT a 4113
Global Const AGIE MARKERR a 4114
Global Const AGIE-SETERR - 4115
Global Conrt AGIE RECACCESS a 4116
Global Const AGIE FLDACCESS a 4117
Global Const AGIE INDEXERR a 4118

Function NDEV (Mean, SO) As Single
Const Pi 2 3.1415926536
NDEV a Sqr(2 * Log(1 / Rnd)) Cos(2 *Pi Rnd) SD+ Mean

End Function

Function ML 0) As String
ML a Chr$(0O) + ChrS(13)

End Function

C.14

Code For Agi.bas - database

*Agility/yB Release 001 (0.243) Definitions
Copyright (C) Apex Software Corporation, 1992. ALL rights reserved.

* *REQUIRES VISUAL BASIC 2.0 '

File Maintenance

Declare Sub AgivietwIpen Lib Nagivb0Ol .dLL" (ByVaL hand%, ByVal vietaiameS, Byval made$)
Declare Sub AgiSchemeopen Lib *agivbOOl.dll" (ByVaL hand%, ByVat dbhandM)
Declare Function AgiFreeFite Lib "agivbOO1.dll" () As Integer
Declare Sub Agi ViewClose Lib "agivboOl.dtl" (ByVaL handX)
Declare Sub AgiViewClos*AtL Lib "agivbOOl.dtL" ()
Declare Function AgiError Lib magivbOOl.dit" () As Integer
Declare Function AgiErrorText Lib wagivbOO¶.dit" () As String
Declare Function Agi InternalError Lib "agivb00l .dll" () As Integer
Declare Function AgiVersion Lib uagivbOOl .dll" () As String

IRecord maintenance

Declare Sub AgiView~elete Lib "agivb00l .dll" (ByVal handX)

IRecord data access and manipulation

Declare Sub AgiVietiAdd Lib "agivbDO1.dtt" (ByVaL handX, ByVaL defsS, LpRec As Any)
Declare Sub AgiViewGet Lib "agivb00l.dtt" (ByVat hand%, ByVal defs$, Iplec: As Any)
Declare Sub Agi ViewUpdate Lib "agivbOO1.d(ll (SyVat hand%, ByVat defs$, Iplec As Any)
Declare Function AgiViewCount Lib "agivb0Ol.dtL" (ByVal hand%) As Long

I Ordering

Declare Sub AgiViewSort Lib '"agivbOOl.dlt" (ByVat hand%, ByVat sorts$)
Declare Sub AgiView.Ansort Lib "agivbOO1.dit" (ByVal hand%)
Declare Function AgiViewSortedOn Lib "agivbOOl .dll" (ByVal handX) As String

I Positioning

Declare Function AgiViewfirst Lib "agivbO0l.dLL" (ByVaL hand%) As Integer
Declare Function AgiViewwext Lib "agivbOOl .dll" (ByVal hand%) As Integer
Declare Function AgiViewL~ast Lib "agivbOOl.dLl" (ByVaL hand%) As Integer
Declare Function AgiViewPrevious Lib "agivbOOl.dll" (ByVal hand%) As Integer
Declare Function AgiViewGetRow Lib "agivb00l.dt I" (ByVal hancX) As Long
Declare Sub AgiViewSetRow Lib "agivbOOl.dlt" (ByVal hand%, ByVal rownuwg)

I Set Selection

Declare Sub Agi ViewFind Lib "agivbOOl.dll" (ByVal hand%, ByVal defsS, IpRec As Any)
Declare Sub AgiViewFindAlso Lib "agivbOOl .dll" (ByVal hand%, ByVal defsS, LpRec As Any)
Declare Sub AgiViewFindAll Lib "agivbOOl .dtll" (ByVal hand%)
Declare Sub AgiViewRefind Lib "agivbOOl .dll" (ByVal hand%)
Declare Sub AgiViewEmptySet Lib "agivbOOl .dll" (ByVaL hand%)

ISet save, restore, copy and deletion

Declare Sub AgiView4emorizeSet Lib "agivbOOl .dll" (ByVal hand%, ByVal setnameS)
Declare Sub AgiViewRecallSet Lib "agivbOOl .dll" (ByVal hand%, ByVal setnameS)
Declare Sub AgiViewForgetSet Lib "agivb0Ol.dll" (ByVal hand%, ByVaL setnameS)
Declare Sub AgiViewCopySet Lib "agivbOOl-.dlt" (ByVal srch%, ByVal desth%)
Declare Sub AgiViewOeteteSet Lib "agivbOOl.dll" (ByVal hand%)

Declare Sub AgiViewCopyRecord Lib "agivbOOl .dll" (ByVal srch%, ByVal desth%)

1Mark manipulation

Declare Sub AgiVietilark Lib "agivbOOl .dll" (ByVal hardM, ByVal marknameS)
Declare Sub AgiViewTo~ark Lib "agivbOOl.dlL" (ByVaL hand%, ByVal marknameS)
Declare Sub AgiViewForgetMark Lib "agivbOOl .dll" (ByVal hand%, ByVal marknameS)

Record accumujlation

Declare Sub AgiViewBujldRecord Lib "agivbOOl.dL0I (ByVal hand%, ByVal defsS, IpRec As Any)
Declare Function AgiGatheroata Lib "agivbOOl .dll" (ByVaL hand%, fin As Form) As Integer

C. 15

Declare Function AgiGatherCtiData Lib uaqivbOO1.dLt" (ByVaL hand%, ctL As Control) As Integer

I Special definitions to support array storage

Declare Sub AgiViewGetArray Lib "agivboOl .dll" Alias "AgiViewiGet" (lyVaL hand%, SyVat defs$,
Ipffec(As Any)
Declare Sub AgiViewJpdateArray Lib "agivbOOl .dll" Alias "AgiViekixipatem (Byval hand%, SyVat defsS,
ipitec() As Any)
Declare Sub AgiViewAddArray Lib "*agivbOOl .dll" Alias "AgiVieiiAdd" (ByVal hancft, ByVat defsS,
(p~ec() As Any)
Declare Sub AgiVieuluitdlecordArray Lib "agivbOOl.dtt" Alias "AgiVeiduitd~ecord" (ByVat hand%,
ByVat defsS, Lplec() As Any)

C. 16

Code f or Behm~tat Form

Option Explicit

Sub cmdCatc Click (
Dim Mod As String
Dim Eec~ode As String
Dim ModeCotunt As Integer
Dim RecCount As Integer

Dim P1 As Double
Dim BaseCoefficient As Single
Dim BaseExponent As Single
Dim PredCoefficient As Single
Dim PredExponent As Single
Dim EstEffort As Double
Dim LogEstEffort As Double
Dim ACTEFFORT As Single
Dim LogActEffort As Doubte
Dim ActEffMean As Double
Dim LogActEffMeain As Double

Dim Boehmilandle As Single

Dim S~uwctEff As Double
Dim SumLogActEff As Double
Dim SSE As Double
Dim LogSSE As Double
Dim LogSSTO As Double
Dim SuW4RE As Doubl*
Dim SumLogMRE As Double
Dim R2 As Single
Dim RRMS As Single
Dim MRE As Single
Dim LogMRE As Single
Dim MREMean As Single
Dim PredLevel As Single
Const MRELimit x .25
Dim ImproveLevel As Single

If optOrganic.Vatue a True Then
Mode x "1ORG"1

Elseif optSemiD.Vatue = True Then
Mode =IO5j)IO

Elseif optEfbedded.VaLue =True Then
Mode = "l

ELself optALlData.Value :True Then
Mode a"ALL's

Else
Mode = "UNK"

End I f
Mode = Trim(Mode)

BaseCoefficient = Vat(txtBaseCoeff.Text)
BaseExponent =VaL(txtlaseExp.Text)
PredCoefficient a VaL(txtPredCoeff.Text)
PredExponent =Val(txtPredExp.Text)

Boehmllandle =DBHandle
'AgiVi etipen Boehmllandle, "~boehm' s.dbf", 'OR"
'Debug.Pr-*,t AgiErrorText()
more a AgiViewFirst(BoehmllandLe)

'Find Average of Actual Efforts in Real and Log domains
* SuwActEff z 00

SuiLogActEff a 09
ModeCount = 0

Do While more
* ~AgiVi ewGet Boehm~andte, "MODE(S)", Rec~ode

If Mode x Trim(Rec~ode) Or Mode = "ALL" Then
ModeCount 2 ModeCount + 1
'txtNuRffode.Text - FormatS(ModeCount, "9900")
AgiVieticet Boehmflandte, "ACTEFFORT(F)"I, ACTEFFORT

C. 17

SumctEff a SumctEff + ACTEFFOAT
Su..ogActEff a Sum~ogActEff + Log(ACTEFFORT)

End If
more a AgiViewmext(moehm~andle)

Loop
If ModleCo..mt >0 Then

ActEff~ean aSumctEff / ModleCoutai
LogActEffteen a SiuLogActEff I odeCount

E Ise
MsgBojc "No Records founid with matching Node."
Exit Sub

End If

'Catuctat* statistics
SSE a 08
LogSSE a 0N
LoSSSTO = 00
Sui4RE a 00
SuiLo91ERE a 00
PredLevel = 01
1nproveLevet - 0!
AecCount *0
ModeCotait 0

more a AgiViewFirst(IoehmMandie)
txtNuwHode.Text a FormatS(ModeCount, "1#00"1)
Do White more

RecCotznt = RecCouxnt + 1
txtNwi~ec:.Text a Format$(RecCotait, 11011)
AgiViewd~et BoehnmIandie, *oehmRDS, Boehm~ec
If Mode = Trim(Boehnatec.Mode) Or Mode a "ALL" Then

ModeCount z ModeCount + 1
txtNumode.Text a FormetS(ModeCount, "8880)
PI = 6oehmnec.RELY * Boehn~ec.D8SIZE * Boehn~ec.CPLX *Boehm~ec.EXTIME

PI a PI * Boeh.~ec.STOR * Boehm~ec.VIRT * Boehm~ec.TURU Boehffiec.ACAP
PI P1 Boehw~ec.AEXP * Boehn~ec.PCAP * Boehff~ec.VEXP 8oehm~ec.LEXP
PI z P1 * BoehuRec.MODP * Boehn~ec.TOOL * BoehmReec.SCEC& 8 oehm~ec.RV0L
EstEffort a PI * PredCoefficient * (9oehnf~ec.ADJKDSI PredExponent)
LogfstEffort a Log(EstEffort)
MARE = Abs(Bo.Inn~ec.ACTEFF0RT - EstEffort)
LogMAE =Abs(Log(Boeha~ec.ACTEFFORT) -LogEstEffort)

'CaLcuLate sums Boehm~ec.STOR
SSE = SSE + MAE ' 2
LogSSE a LogSSE + LogMRE ^2
LogSSTOa LogSSTO + (Log(BoehmRec.ACTEFFORT) - LogActEffMean) 2
Sum4RE z SuIIAE + MAE
If MAE / Boehm~ec.ACTEFFORT - MRELimit Then

PredLeveL = PredLevel + 10
End I f
If MARE < Abs(Boehn~ec.ACTEFF0RT -(PI BaseCoefficient *(BoehiRiec.ADJKDSI

BaseExponent))) Then
ImproveLevet = lnproveLevel + 1#

End If
End if
more z AgiViewNextCBoehm~andte)

Loop
'AgiViewCLose Boehndlandle

If ModeCount > 0 Then
R2 a 1 - (LogSSE *(ModeCount M 1)/ (LogSSTO *(ModeCount 2))
ARMS = (SqrCSSE IModeCount)) IActEffMean
MREMean = SuaMRE IModeCount
PredLevel = (PredLevet / ModeCount) * 100
ImproveLeveL z (ImproveLevet / ModeCount) * 100

End If

Text3.Text z FormatS(R2, "10.00000)
Text4.Text a FormatS(AAMS, "10.000"1)
Text5.Text =FormatS(MREMean, "10.00"1)
Text6.Text z FormatS(PredLevet, "800.0"1) + "4a"
Text9.Text = FormatS(InproveLeveL, "10.0"6) + 1"X"

End Sub

C. 18

Sub cndCanceL Ctick ()
Unload frmStatgoehm

End Sub

Sub optEmbedded Click (
txtBaseCoef?.Text = "2.81"
txtflaseExp.Text = "11.20",

End Sub

Sub optarganic Click (
txtBaseCoef.Text "83.2"1
txtBaseixp " 11.05"4

End Sub

Sub optSemiD Click C
txtBaseCoeff.Text = "63.0",
txtsaseExp.Text z "11.12"1

End Sub

C. 19

Code f or ShinGraph Form

Option Explicit
Option Base 1

Sub cmdCanceL Click
GraphI.Oataleset sG-Atl Data
Unload frmdoehnm3raph

End Sub

Sub cindNorm Click (
If NormState = Norm Off Then

cmIorm.Captiorin "Normalize off"H
NormState a Norm-On

Else
cedNorm.Caption a "Normalize On"
NormState = Norm-Off

End If

Select Case DSType
Case loehaDi

LoadBoehiroata XMin, M~ax, NormState
Case SampteOS

LoadSairple~ata XMin, M~ax, NormState
Case ThesisDB, CompThesisDB
Case UnknowrDB

End Select

Graphl.Drai44ode = G-Draw
If FileGraph = 1 Then

Graphl.Draidlode = G Urite
End If

End Sub

Sub cmdZoom-Click C
Dim TempYMax As Single
Dim TeapYMin As Single
Dim TealpXMax As Single
Dim TeapxMin As Single
Dim Redraw As integer

Redraw = False

TempY~ax: = YMax
TempY~in =Y~in
TempXCMax =XMax
TempXMin =XMin

I rmZoomvata.Show Modal

If XMax <> TempXMax Or XMin <> TempXMin Then
Redraw = True
Graphl.DataReset = G -All -Data
Select Case DBType

Case BoehirOB
Load~oehir~ata XMin, XMax, NormState

Case SaipteOB
LoadSauple~ata X~in, XMax, NormState

Case ThesisDB, CompThesisOB
Case UnknownDl

End Select
End If

If YMax - TempYMax Then
Redraw = True
Graphl.YAxisMax z YMax

End If

If Thin <> TempY~in Then
Redraw = True
Graphl.YAxisMin =Y~in

End If

If Redraw Then

C.20

Graph1.Draw~ode z 6 Draw
End If
If FileGraph = 1 Then

Graphl.Draid~ode =G Write
End I f

End Sub

Sub Form-Load C
txtDOName.Text a SFiLeSpec:
Screen.MousePointer = HourGLass

'set filename for saving graph
Graphl.nmageFjLe a "ibehmgrph"
Graph1.NuW~ojnts a 100
Graphl.IndexStyte = 1 'Enhanced index style permits access to

'gaph 2-0 arrays for scatter data.

Graphl.YAxisStyle = 2 'Permits user defined Y-origin through YAxis~in,
Graphl.YAxisTicks = 8

'Set default Axis Limits for graph
YMax = 1# 'Will, increase upon reading database
YMin a 0
XMax = 3000# 'May decrease to fit x range of data
XMin = 09

WindowState a Maximized
NormState a Norm-Off
Graphl.LeftTitte= a"MMU
Graphl.BottamTjtte = "Size in KDSI"1
Graph1.Draw4ode = G Draw

Select Case OBType
Case BoehmDB

LoadBoehn~ata XMin, XMax, NormState
Case Saemple0B

LoadSampleoata XMin,)(Max, NormState
Case ThesisDl, CompThesisDfl
Case UnknownDS

End Select
Screen.MousePointer = HourGlass

'Set Y-axis scale
Graphl.YAxis~ax = YMax
Graphl.YAxisMin = YMin
Graph1.Draw~ode = G Draw
if FileGraph = 1 Then

Graphl.Draw4ode = G Write
End If
If FileGraph = I Then

Graphl.Drawe~ode = G Write
End I f
Screen.MousePointer = Default

End Sub

Sub Load~oehir~ata (XLower As Single, XUpper As Single, Normalize As Integer)
Dim Mode As Integer
Const Num4odes = 3
Graphl1.NunSets = NumModes
Dim I As Integer

'Array subscripting
1 = Organic Mode
2 = Semidetached Mode
3 3Emb~edded Mode

ReDim ModeCountCNum~odes) As Integer

Dim P1 As Double
ReDim Coefficient(Nur~odes) As Single
Reoim Exponent(Nwrilodes) As Single
Re~im Coeff~nty(Nure~odes) As Single
Re~im Exp~nly(Num~odes) As Single
ExpOnty~i) = 1.05

C.21

Expanty(2) a 1.12
Exponty(3) a 1.2

Dim Boehm~andle As Integer
Dim RecCount As Integer

Re~im TempQNumodes) As Double
ReDi, Suw#MO(Num~odes) As Double
ReDim SusQ2(Num~odes) As Double
Re~im TempLog(Nizd~odes) As Double
R.Oim Tempiv(Nmwiiodes) As Double
ReDim aO(Numtodes) As Integer
ReOim al(Numqodes) As Double
Re~im a2(Numlodes) As Double
Re~im d0(NmM~odes) As Double
ReDi, dl(Nuiodes) As Double

'Intiatize alt mode arrays to zero
For I a 1 To Numlodes

SUHMQM) 0 08
SwiQ2() Z 0#
ModeCotmnt(I) a 0
al(l) a 00
a2(1) X08
dOCI) =0#

d(Id) 0#
Next I
RecCount 0

goehmi~andie - B6andLe
more =AgiViewFirst(Boehmllandte)
Screen.MousePointer =HourGLass
Do While more

AgiVi ewGet Boehmllandl e, BoehmRDS, Boehm~ec

RecCount aRecCount + 1

'Set appropriate Mode and update correct ModeCount
Select Case Trim(Boehn~ec.Mode)

Case HORGII
- Model=

Case "SDI'
Mode a 2

Case "IEI
Mode - 3

Case Else
NsgBox "Unrecognized Mode at record "+ Str(RecCount) + '.
Mode = 1

End Select
ModeCount(Mode) = ModeCount(Mode) + 1

'Calculate the MutipLier, PI
PI = Boehm~ec.RELY * Boehm~ec.DBSIZE * Boehm~ec.CPLX * Boehm~ec.EXTIME
PI = PI * Boehm~ec.STOR B oehn'Aec.VIRT * Boehm~ec.TURN * Boehm~ec.ACAP
PI P1II * Boehm~ec.AEXP *Boehn~ec.PCAP * BoehmR~ec.VEXP * 9oehn~ec.LEXP
PI PI * Boehm~ec.M0DP *Boehm~ec.T~OL * Boehn~ec.SCED * Boehm~ec.RVOL

'Calculate sums for Coefficient only
TempQ(Mode) aPI * (Boehn~ec.ADJKDSI - ExpOnLydMode))
SuOWIM(Mode) = SumMMQ(Mode) + Boehm~ec. ACTEF FORT * Tea'po(Mode)
Suim2(Mode) - SuQ2(Mode) + TeopadMode) * Temop(Mode)

'Calculate suns for Coefficient and Exponent
TemupLog(Mode) = Log(goehn~ec.ADJKDSI)
TempDivCMode) = Log(Boehn'Aec.ACTEFF0RT / P1)
aidMode) = aidRode) + TempLog(Mode)
a2dMode) = a2(Mode) + TenqLog(Mode) * TeiipLog(Mode)
dOdMode) = d0CMode) + Teap~iv(Mode)
dl(Mode) a dldMode) + TempDiv(Mode) *TetnpLog(Mode)

If Boehm~ec.ADJKDSI -= XLowier And Boehm~ec.ADJKDSI <=XUpper Then
'Load Data to the Graph
Graphl.ThisSet M ode
GrapIVI.ThisPojnt = ModeCount(Mode)

C.22

if Normalize Then
Graphi.GraphData aBoehm~ec.ACTEFFORT / PI

E lse
GraphI .GraphData =Boeheiec.ACTEFFORT

End I f
Graphl.XPos~ata =So.Iw~ec.ADJKDSI

'Check for maximum Effort and update if needed
If Y~ax < Soehmiafc.ACTEFFORT Then

YT4ax a Soehafec.ACTEFFORT
End If

End If

more a AgiVieiiNext(Boehm~andte)
Loop

For I a 1 To Num~odes
'Calculate equation parameters
Coeffanty(1) aSwINMQ(I) / SuwQ2(I)
aO(1) a todeCount(I)
Coefficient(I) a Exp(0aZ() *dOCI) -AM() d10)) I(&O0 *8(1) a id) * aldl))))
Exponent(I) a (a0(1) * dIG) -aldl) *dOd)) 000~d) *a2(1) -aldl) a&d0))

'Set mode characteristics
Graphi.ThisSet a I
Select Case I

Case 1
Graphl.LegendText = "ORS"
Graphl.Synibot~ata = G-CROSS-PLUS
Graphl.CoLoroata = G-BLUE

Case 2
Graphi .LegenidText = "SDI'
Graphl.SymbiriData = G CROSS TINES
Graphl.Cotoroata = G-GREEN

Case 3
Graphi .LegendText a El
Graphl.Syn*boiData a G TRIANGLE UP
GraphI.Color~ata = G-RED

End Select

Next I
Screen.NousePointer = Default

End Sub

Sub LoadSampteoata MXowier As Single, XUpper As Single, Normalize As Integer)
Dim Node As Integer
Const NurmIodes = 1
Graphi .NumlSets = NumV4odes
Dim I As Integer

'Array subscripting
1 1=a Sample Node

ReDim NodeCountdNum~odes) As Integer

Dim PI As Double
ReDim Coefficient(Num~odes) As Single
ReDim ExponentdNurlodes) As Single

Dim Samptellandle As Integer
Dim RecCount As Integer

ReDim TempLogdNum~4odes) As Double
ReDim TempDiv(NurI~odes) As Double

*Reoim aOdNum94odes) As Integer
Re~im al(Nuii~odes) As Double
ReDim a2(Numlodes) As Double
ReDim dO(Nuim4odes) As Double
ReDim dldNuwlodes) As Double

For I =1 To NutW~odes,
NodeCountdl) = 0
ai0) = 09
a2(I) a 0

C.23

ISOM = Of
dIMl - 0

Next I
RecCount a 0

Saimpte~andle a DSandle
more a Agi~etiFirst(SampLeNandte)
Screen.MousePointer a HourGlass
Do Wil~e more

AgiViewGet Saimle~andLe, SampteRDS, SampteRec
RecCo..mt a RecCo..mt + 1

'Set appropriate Mode and update correct ModeCount
Mode a 1
ModeCountCHode) a NodeCount(Hode) + I

'CalcuaLte the Nuliptier, PI
III a Sampt*ec:.PI
IP1 Is Sampteaec.RELY * SampLeRec.DBSize * SamrpleRec.CPLX *SampLeRec.EXTIME

'P1 PI SanpLeRec.STOR * SampteRec.VIRT * SampteRec.TURN * Sampte~ec.ACAP
'P1 = PI SaipteRec.AEXP * Saiple~ec.PCAP * SampleRec.VEXP * Saupte~ec.LEXP

= P1 IsP SanpleRec.MCDP * SaiupteRec.TOOL * SamqpleRec.SCED * SampeRec.RVOI.

'Calculate swias for Coefficient and Exponent
TempLog(Mode) = Log(Saeiptefec.ACTKDSI)
Tempoiv(Hode) a Log(SanpteRec.ACTEFFORT / PI)
aiCMode) a al(Mode) + TuupLogCMode)
aZ(Mode) a a2(Mode) +TempLog(Mode) * TempLog(Mode)
dO(Mode) a dO(Node) + TeuqfDiv(Node)
dl(Mode) =dl(Mode) + Tewoiv(Mode) *TempLogCMode)

If SaiipLeRec.ACTKOSI >z XLower And SampLeRec.ACTKDSI <= XUpper Then
'Load Data to the Graph
Graphi.ThisSet =Mode
Graphl.ThisPoint a ModeCount(Mode)
If Norma~ize Then

Graphl.GraphData aSampteftec.ACTEFFORT / P1
Else

Graphl.GraphData = SaaipteRec.ACTEFFORtT
End If
Graphi .XPosData = SampleRec.ACTKDSI

'Check for niaxinun Effort and update if needed
If Y~ax 'SaiipteRec.ACTEFFORT Then

YMax =SairpLeRec.ACTEFFORT
End If

End If

more = AgiViewNextCSampleHandte)
Loop

For I z 1 To Num~odes
aO(I = ModeCount~l)
CoefficientM1 = Exp((a2() *dOd) al(D) * dl(I)) (aO(1) *a2(1) -aldl) *alCI))

Exponentdl) = 0aO0) * did) aldl) *dOd!) 000OC) *a2M1 al(1) *aidI)

'Set mode characteristics
Graphl.ThisSet zI
SeLect Case I

Case 1
Graphi .LegendText = ISMP1i"
Graphi.SynibotData z G-CROSS-PLUS
Graphi.ColorData a G-BLUE

Case 2
Graphi.LegendText = "SDI'
Graphl.Sy.iiiotData =G-CROSS-TIMES
Graphl.CotorData - G GREEN

Case 3
Graphi .LegendText = "l
Graphl.SymbtoData = G-TRIANGLE-UP
Graphi.CotorData z G-RED

End Select
Next I

C.24

Scro".NousePointer Woefult
End Sub

C.25

Cods for BooeW at Form

Sub cmdCalibrate-CLick (
Dim Mode As String
Dim ModeCount As Integer
Dim RecCount As Integer

Dim PI As Double
Dim Coot fOnLy As Single
Dim Exp~nty As Single
Dim Coefficient As Single
Dim Exponent As Single

Dim Boehm~andte As Single

Dim Tempo As Double
Dim SwOMI As Doubte
Dim SuwQ2 As Double
Dim TempLog As Double
Dim TempDiv As Double
Dim ao As Integer
Dim al As Double
Dim a2 As Double
Dim dO As Double
Dim dl As Double

If optOrganic.Value = True Then
Mode = NORGU#
ExpOnty = 1.05

Etself optSemiD.Vatue z True Then
Mode a IISDII
ExpOnty = 1.12

Elself optEntbedded.Vatue =True Then
Mode z El
ExpOnLy a 1.2

Elseif optAliData.VaLue =True Then
Mode z"ALL"
ExpOnty z 1.16

Else
Mode " UNK"
Expanty = 1.16

End If

Soehnm4andLe = DiHandLe
more zAgiView~First(BoehmHandte)

SumMMQ 301

ModeCount z 0
txtModeTotaI. Text = FormatS(ModeCount * "#ft10")
RecCo..mt = 0
al =0#
a2 = 00
dO = 0#
dl = 01

Do While more
RecCount z RecCount + 1
txtRecTotal .Text z FormatS(RecCouxmt, "1100"1)
Agi Vi ewGet Boehmllandl e, BoehuIRDS, Soehm~ec
If Trim(Boehn~ec.Mode) = Trim(Mode) Or Mode ="ALL" Then

ModeCount z ModeCount + 1
txtModeTotaL.Text FormatS(ModeCount, "11010")
PI = Boehnffec.RELY * oehuiec.DBSIZE * Boehn~ec.CPLX S oehmaec.EXTIME
P1 = PI * Boehm~ec:.STOR * Boehm~ec.VIRT * Boeha~ec.TURN * 9oehu~ec.ACAP
PI - PI * goehm~ec.AEXP * 9oehm~ec.PCAP * Soehec.VEXP * Boehmec.LEXP
PI = PI * Boehm~ec.MODP * Boehmn~ec.TOOL * Soehm~ec.SCED *UoehuRec.RVOL

'Calculate sums for Coefficient only
Tem'po = PI * (9oehn~ec.ADJKDSI ExpOnLy)
SuimIMQ = SurilMQ + Boehu~ec.ACTEFFORT * Tempo
SumQ2 z SwmQ2 + Tempo * Tempo

'Calculate sums for Coefficient and Exponent

C.26

TempLog a LogCB~ehIlec.ADJDS I)
Tewbiv a Lo9(Bo.Iwe~c.ACTEFFORT PI)
&I al + TOMwLog
a2 a a2 TempLog * TemfpLog
dO xdO + TempDiv
dl z dl + Tempiv * TuepLog

End If
Lopmore = AgiViewliext(Boehailandte)

If ModeCount 0 Then
CoeffOnty SuiOW / Sum2

aOa ModeCount
Coefficient aExp((a2 *dD - al dl) / (aO a2 - al 'al))
Exponent a (aO di - al * dO) / C&O'a2 - al * al)

End if

txtCoeffOnty. Text =FormatS(Coeffanly, 110.O0000')
txtCoefficient.Text z FormmtSCCoefficient, 110.00001)
txtExponent.Text FormatS(Exponent, -0.0000OM)

End Sub

Sub cmdCancel Ciick C
Unload FrmCaL~m

End Sub

Sub Form-Load C
txtDSName.Text = DBi~ieSpec

End Sub

C.27

Code for *oo~hmat Form

Sub cmdCanceL Click (
Textl.Text a u
Text2.Text z0
Unload Fri~oehim

End Sub

Sub cmdFirst Click C
more Is AgiView~First(DBHandLe)
ComputeEffI rt

End Sub

Sub cmd~ext Click C
more - AgiViewliextCDlHandt*)
CaputeEffort

End Sub

Sub cmd~revious Click C
more a AgiV~ewPrevious(DSandie)
CouyputeEff art

End Sub

Sub ComputeEffort C
Dim Multiplier As Double

AgiViewGet DiHandte, BoeliniDS, Boethniec
Fietdl.Text =Boehmiec.RELY
Fietd2.Text =Boehniec.DSSIZE
FieLd3.Text a Boehffiec.CPLX
FieLd4.Text a Boeliniec.EXTIME
FieLd5.Text aBoehmRnec.STOR
FieLd6.Text aUoehmiec.V1RT
Fietd7.Teict = Boehmiec.TURN
FieLdS.Text z Boehmiec.ACAP
FieLd9.Text a Boehmiec.AEXP
FieLdlO.Text = Boehuiec.PCAP
FieLdll.Text a Boehmiec.VEXP
FieLdl2.Text aBoehmec.LEXP
Fietdl3Text = Bohwec.MOIW
Fieldl4.Text - Boehmiec.TOOL
FietdM5Text u Boehiniec.SCED
Fietd25.Text BoehmRec.RVOL

Field16.Text =Boehmiec.Nin
Field17.Text =Boehmiec.Year
Fietd18.Text =Boehniec.LAMGUAGE
Fietdl9.Text x Boehniec.Made
Fietd23.Text a Boehmiec.ESTEFFORT

FieLd20.Text = Boehmiec.PI
FieLd~l.Text a Boehniec.TOTKDSI
Field22.Text = Boehmiec.ADJKDS1
FieLd24.Text = Boehniec.ACTEFFORT

Multiplier = Vat(Fieldl.Text) * Val(FieLd2.Text) *VaL(FieLd[3.Text) *Vat(FieLd4.Text)

VaL(FietdS.Text) *Vat(Field6.Text) * VaL(ield.Text) * VaL(FieldS.Text)
Multiplier =Multiplier * VaL(FieLd9.Text) * VaL(FieldlO.Text) * VaL(Fieldil.Text)

VaL(fietdl2.Text) * Vat(Fieldl3Text) * Val(FieLd14.Text) * Va(ffieWdl5.Text) *VaL(FieldZS.Text)
Texti .Text = FormatS(Multiplier#, "0.90")
Select Case Trim(FieLdl9.Text)

Case "ORG'
Effort# = 3.2 * Val(FeWd22.Text) 1.05 *Multiplier#

Case "SDI'
Effort# - 3M * VatCFieLdZ2.Text) -1.12 *MuttipLier#

Case "Ell
Effort# = 2.8 * VatCFieLd22.Text) 1.2 *MuLtipLier*

Case Else
'Msguox "Nat Reading Made from Database."
'Unload Frnioehm

End Select
Text2.Text = FormatS(Ef fort#,10 ,S#,###,M.0")

End Sub

C.28

Sub~ Form Load C
morie u AgiVietiFirst(DBHande)
Co.muteEf fort

End Sub

C.29

Code for BoehmTbl Form

Option Expticit

Sub cujdCacet CLick ()
UnLoad frWdoehmTabte

End Sub

I

C.30

Code for CompCret

Option Explicit
Dim ThesisFiteSpec As String

Sub cndCanceL Click ()
Unload frwICoeqpCreate 'Close ThesisHandle is in Unload

End Sub

Sub cndClear Click (
While AgTIViewmFirst(ThesisllandLe)

Agi~ewDielete ThesisHandle
If AgiErroro) - 0 Then

Msg~ox "Record deletion error: + AgiErrorText()
End If

Wend
cmdCreate.Enabted a True
cmdCtear.Enabted =False
cmdSave.Enabted =False

End Sub

Sub cmdCreate Click C
Dim N~Lidec As Integer
Dim NunCheck As Integer

Randomize 'Reseeds random number generator

cmdCLear Click 'Clear existing records if any

Screen.NousePointer = HourGlass
NullCheck a 0
If chkCID.Value z True Then

ThesisRec.Category = 1C~
NunCheck =NumCheck + 1
For Nui~ec =1 To Int(Val(txt9CNw,.Text))

M4akeThesisRecord VaL(txtClDCoeff.Text), Val(txtClDExp.Text), Vat(txtCIDSO.Text)
If AgiError() - 0 Then

Msgeox "Could not create record for Comms/Identification."
cndClear Click
Screen.MousePointer aDefault
Exit Sub

End If
Next Nui~ec:

End If
If chkNAV.Value = True Then

ThesisRec.Category = ONAV"I
NumCheck = NunCheck + 1
For Niua~ec 1 To I nt(Val (txt9CNum. Text))

14akeThesisRecord Val(txtNAVCoeff.Text), Val(txtNAVExp.Text), Val(txtNAVSO.Text)
If AgiError() - 0 Then

MsgBox "Could not create record for Navigation Sensors."
cndClear Click
Screen.NousePointer = Default
Exit Sub

End If
Next Numaec

End If
if chkCAV.Value = True Then

Thesisftec.Category = "1CAV1"
NunCheck = NumCheck + 1
For Nui~ec = 1 To Int(VaL(txtBCNun.Text))

MakeThesisRecord VaL(txtCAVCoeff.Text), Val(txtCAVExp.Text), Val(txtCAVSO.Text)
If AgiError() - 0 Then

tMsgBox "Could not create record for Core Avionics."
cmdCLear Click
Screen.MocusePointer = Default
Exit Sub

End If
Next Nui~ec

End If
if chkECS.Value = True Then

ThesisRec.Category = "1ECS"1
NumCheck =NunCheck + 1
For Num~ec = 1 To Int(Vat~txtBCNum.Text))

C-31

MakeThesislecord Vat(txtECSCoeff.Text), Val(txtECSExp.Text), VaL(txtECSSD.Text)
If AgiError() - 0 Then

MsgBox "Could not create record for Electronic Combat."
cimiCtear Click
Screen.NousePointer a Default
Exit Sub

End I f
Next Nwie~c

End I f
If chkOFF.Value a True Then

ThesisRec.Category a "OFF"
NunCheck - Wumheck + 1
For NumRec a 1 To IntCVat(txtBC~un.Text))

M4akeThesisRecord VaL(txtOFFCoeff.Text), Vat(txtOFFExp.Text), Val(txtOFFSO.Text)
If AgiError() - 0 Then

Nsgsox "Could not create record for Offesive Sensors."
cudClear Click
Screen.knouePointer a Default
Exit Sub

End If
Next Num~ec

End If
If NumCheck =0 Then

Err~sg ="Please select at least one category from the check box list."
MsgBox Err~sg
Screen.MousePointc, - Default
Exit Sub

End I f

cmdCreate.Enabled aFalse
cndCLear.Enabled = True
cmdSave.Enabled = True
Screen.MousePointer z Default

End Sub

Sub cmdSave Click (
Dim SaveHandle As Integer
Dim Filetitle As String

'Get newi FileSpec
On Error Resume Next
Cl4DialogI.DefauLtExt = "1AGI"1
CNDiatogl.Ftags = OFN PATHI4JSTEXIST + OFN OVERWRITEPROI4PT +OFN HIDEREADONLY +

OFN-EXTENSIONDI FFERENT
CMDialogl.Action =DLG-FILE-SAVE
If Err = 32755 Then 'user selcted cancel button

Exit Sub
End If
On Error GoTo 0

'Test to see if new file is already open or exists
Screen.MousePointer = HourGlass
If Cf4Dialogl.Filetitle = frnf~ain!CMDialog1.Filetitle Then

AgiViewCLose DSHandte 'Close Open Copy
Kill CMDiatogl.Filename 'Delete Previous open copy
fri#lain!mnuCloseDB.Enabted 2 False 'Reset menu selection
frff~ainimnuuViewGraph.Enabted = False
frni~ainmn~uViewTable.Enabted = False
fruE~ainimnuView~ata.VisibLe = False
frir~ainimnvuCalBoehm.EnabLed = False
fririainmnmuStatEvat.EnabLed - False

Elseif CMDialogl.Filetitte = "CON4PTHS.AGI"I Then
Exit Sub 'File update will be automatic upon Cancel Click

Elseif DirS(CMDialogl.Fitename) ~ "Then 'if File exists
Kill CMDiatogl.Fitename 'Delete unopened coy

End If

IOpen blank file to copy into
SaveHandle 2AgiFreeFileo)
Filetitle 2CMDiaLog1.FiLetitle

AgiViewOpen SaveHandle, Fitetitle, "1CAUR"1
If AgiErroro) - 0 Then

Msg~ox "File Creation Error: "1 + AgiErrorText()
End If

C.32

* Copy current file into blank copy for saving
more = AgiViewFirst(ThesisHandlt)
White more

AgiViewGet Thesislandte, ThesisRDS, ThesisRec
AgiViewAdd SaveHandle, ThesisRDS, ThesisRec
If AgiError() <> 0 Then

NsgBox "Error adding record to save file." + NL() + "File results undetermined."
AgiViewCtose (SaveHandte)
Screen.MousePointer = Default
Exit Sub

End If
more = AgiViewNext(Thesisfandte)

Wend
AgiViewCLose (SaveHandte) 'ThesisHandte remains open
Screen.MousePointer = Default

End Sub

Function FindEDSI (ADOKDSI As Double, MOOKDSI As Double, DELKDSI As Double) As Double
'Solution is fo~rd by weighting the KDSI values
'These weightIngs are from the Softcost-R Manual page R-83
'Note the wieghtings for tines and modules have been added so as to include
'the effect of altering both the line and the module
FindEDSI = .53 * ADDKDSI + (.27 + .24) * MOOKDSI + (.15 + .11) * DELKDSI

End Function

Function FindEXiIME (PerTime As Double) As Double
If PerTime -= 65# Then

FindEXTIME = 1#
Else

FindEXTIME = 1.82 * (PerTime / 100#) " 1.305
End If

End Function

Function FindLearn (BCNUtJ As Integer) As Double
'This function assumes the reattionship holds true for 6 block changes.
'But SYSCON states relationship holds for 6 years.
'Future may need to adjust for years if block changes are not 1 year
'The exponent comes from SYSCON, Thesis TAble 5
If 8CNUM - 2 And BCNUN < 6 Then

'No coefficient => normalize to 1.0
'Note Effect is ratio to previous BC and not the first BC
FindLearn = (BCNUNM (-.375)) / ((BCNUM - 1) (-.375))

Else
FindLearn = 1#

End If
End Function

Function FindSTOR (PerMem As Double) As Double
If Pertem - 65# Then

FindSTOR = 10
Else

FindSTOR = 1.94 * (PerMem / 1000) 1.425
End If

End Function

Sub Form Load ()
Dim Filetitle As String
Dim FileSpec As String

'Open new file (agi formats only).
ThesisHandle = AgiFreeFileo)
Fitetitle = "COMPTHS.AGI"
AgiViewOpen ThesisHandle, FiLetitte, "CAUR"
If AgiError() - 0 Then

MsgBox "File Open Error: " + AgiErrorText()
End If
Tablel.ViewHandle = ThesisHandle

'Enable Appropriate Buttons
more = AgiViewFirst(ThesisHandte)
If more Then

cddCreate.EnabLed False
Else

cmdCtear.Enabled = False

C.33

cmdSave.Enabled - False
End If

'Set FiteSpec for Save Dialog Box
If Right(Fitel.Path. 1) <> 11\1 Then

FileSpec z Fitel.Path + 11\1 + Filetitte
Else

Fi~eSpec a Filel.Path + FiletitLe
End If
CH~iatogl.Filename aFileSpec

End Sub

Sub Form Unload (Cancel As Integer)
AgiViewCtose ThesisHandle

End Sub

Sub MakeThesisRecord (Coefficient As Doubl., Exponent As Double, StcE~ev As Double)
Dim NumBC As Integer
Dim EffSOPercent As Single
Dim SD As Single
Dim EAF As Double
Dim EstEffort As Single
Dim LearnEffect As Double

SD = Val(txtFactorSD.Text)

ThesisRec.BCNU4 I Int((Mal (txtBCNUM. Text))* Rnd + 1)

ThesisRec.RELY =NDEV(1, SO)
ThesisRec.DBSIZE = WDEV(1, SD)
ThesisRec.CPLX =NDEV(1, SD)
ThesisRec.TIMEUTIL =30# + 700 * Rnd
ThesisRec.EXTIME =FindEXTIME(Val (ThesisRec.TIMEUTIL))
ThesisRec.NEMUTIL 30# + 70# * And
ThesisRec.STOR =FindSTOR(Val(ThesisRec.ME#4UTIL))
ThesisRec.VIRT =NDEV(1, SD)
ThesisRec.TURN = NDEV(1, SD)
ThesisRec.ACAP =NDEV(1, SD)
LearnEffect z FindLearn(Int(ThesisRec.BCNUM))
' Spread Learning Effect to AEXP and LEXP
ThesisRec.AEXP =NDEV(1, SD) * Sqr(Learniffect)
ThesisRec.PCAP = NDEV(1, SD)
ThesisRec.VEXP = NDEVC1, SD)
ThesisRec.LEXP z NDEV(1, SD) * Sqr(LearnEffect)
ThesisRec.MODP =NDEV(1, SD)
ThesisRec.TOOL =NDEV(1, SD)
ThesisRec.SCED = NDEV(1, SO)
ThesisRec.RVOL = NDEV(1, SD)
EAF = ThesisRec.RELY * ThesisRec.DBSIZE * ThesisRec.CPLX *ThesisRec.EXTIME
EAF = EAF * ThesisRec.STOR * ThesisRec.VIRT *ThesisRec.TURN * ThesisRec.ACAP
EAF = EAF * ThesisRec.AEXP * ThesisRec.PCAP *ThesisRec.VEXP * ThesisRec.LEXP
EAF = EAF * ThesisRec.MODP * ThesisRec.T00L * ThesisRec.SCED * ThesisRec.RVOL
ThesisRec.PI =EAF
ThesisRec.ENTR0PY =1
ThesisRec.ACTKDSI = Val(txtDevKDSI.Text) * And
ThesisRec.ADDKDSI =ThesisRec.ACTKDSI * (VaL(txtPerAdd.Text) / 100) * NDEV(1,

Val(txtPerSD.Text) / 100)
ThesisRec.MODKDSI =ThesisRec.ACTKDSI * CVal(txtPer~od.Text) / 100) * NDEV(1,

Val(txtPerSD.Text) / 100)
ThesisRec.DELKDSI = ThesisRec.ACTKDSI * (Val(txtPerDet.Text) / 100) * NDEV(1,

Val(txtPerSD.Text) I100)
ThesisRec.EDSI =FindEDSI (Vatl(ThesisRec.ADDKDSI), Val (ThesisRec.MODKDSI),

Val(ThesisRec.DELKDSI))
EstEffort = EAF * Coefficient * (ThesisRec.ACTKDSI "Exponent) * (ThesisRec.EDSII

ThesisRec.ACTKDSI)
'EffSDPercent is the % of SD at the EDSI value
EffSDPercent = Std~ev / ThesisRec.EDSI
ThesisRec.ACTEFFORT = Exp(Log(EstEffort) + NDEV(D, Log(1 + EffSDPercent)))
AgiViewAdd ThesisHandle, ThesisRDS, ThesisRec

End Sub

Sub txtBCNui LostFocus (

Dim BCNUN As Integer

C.34

BCNUM4 a Int(Vat(txtBCNum.Text))
if BCWUM 2,0 Then

txtBCNum.Text aStr(9CNWIN)
Etse

ErrMsg x "Please select a positve value for" NL()
Errt~sg a Errtlsg + "the numb~er of records."
Msg~ox Errl~sg
txtBCNun.Text a NIO H
txtSC~um..SetFocus

End If
End Sub

C.35

Code for CompGrph Form

Option ExpLicit
Option Base 1

Sub cudCancet Click ()
Graphl.DataReset = GALL Data
Unload frmCoupGraph

End Sub

Sub cmdiorm Click ()
If NormState a Norm Off Then

cmdMorm.Caption-= "NormaLize Off"
NormState a Norm-On

ELse
cmdiorm.Caption a ".ormalize On"
NormState Norm-Off

End If

SeLect Case DBType
Case BoehmDB
Case SampLeOB
Case ThesisDB
Case CompThesisDB

LoadCompnata XMin, XMax, MormState
Case UnknownDB

End SeLect

Graphl.Drawdtode = G Draw
If FiLeGraph = 1 Then

Graphl.DrawMode = G.Write
End If

End Sub

Sub cmdZoom CLick C)
Dim TempYMax As SingLe
Dim TempYMin As Single
Dim TempXMax As Single
Dim TempXMin As Single
Dim Redraw As Integer

Redraw = False

TempYMax = YMax
TempYMin a YMin
TempXMax = XMax
TempXMin = XMin

frmZoonoata.Show Modal

If XMax <> TenmpXMax Or XMin <> TempXMin Then
Redraw = True
Graphl.DataReset = GALL Data
SeLect Case DBType

Case BoehnOB
Case SampteDB
Case ThesisDB
Case CompThesisDB

LoadCompOata XMin, XMax, NormState
Case Unknowrn)B

End SeLect
End If

If YMax <> TempYMax Then
Redraw a True
Graphl.YAxisMax = YMax

End If

If Y~in <> TempYMin Then
Redraw = True
Graphl.YAxisMin = YMin

End If

If Redraw Then

C.36

Graphl.DrahwIode a GDraw
End If
If FiLeGraph = I Then

Graphl.Drabi4ode a G Write
End If

End Sub

Sub Form Load ()
txtDOName.Text a DBFiLeSpec
Screen.MousePointer a Hourglass

,set filename for saving graph
Graphl.ImageFite = "compgrph"

Graphi.NumPoints = 100
Graphl.IndexStyLe = 1 'Enhanced index style permits access to

'graph 2-0 arrays for scatter data.

Graphl.YAxisStyte = 2 'Permits user defined Y-origin through YAxisMin,
Graphl.YAxisTicks = 8

'Set default Axis Limits for graph
YMax = 1# 'Witt increase upon reading database
YMin = 0#
XMax = 3000# 'May decrease to fit x range of data
XMin = 0#

WindowState = Maximized
NormState = Norm Off
Graphl.LeftTitte-= "NM"
Graphl.BottomTitte = "Size in EDS!"
Graphl.DrawMode = G Draw

Select Case DBType
Case BoehnDB
Case SampLeDOB
Case ThesisOB, CompThesisD8

LoadCoampata XMin, XMax, NormState
Case UnknownDB

End Select
Screen.MousePointer = Hourglass

'Set Y-axis scale
Graphl.YAxisMax = YMax
Graphl.YAxislin = YMin
Graphl.Drawt~ode = G Draw
If FiteGraph = 1 Then

Graphl.Draidlode = G.Write
End If
Screen.MousePointer = Default

End Sub

Sub LoadComp:ata (XLower As Single, XUpper As Single, Normalize As Integer)
Screen.MousePointer = Hourglass
Dim Mode As Integer
Dim CIDMode As Integer
Dim NAVIode As Integer
Dim CAVMode As Integer
Dim ECSMode As Integer
Dim OFFMode As Integer

Dim Numvodes As Integer
Const CatPresent = 1
Const CatAbsent = 0
Dim CIDExist As Integer
Dim NAVExist As Integer
Dim CAVExist As Integer
Dim ECSExist As Integer
Dim OFFExist As Integer

Dim I As Integer

'Array subscripting
1 = Comm / ID

C.37

2 x Navigation Sensors
* 3 = Care Avionics

4 a Electronic Combat Systems
* 5 a Of feansive Sensors

Dim P1 As Double
Dim CompNandie As Integer
Dim RecCount As Integer

Cowplandto a OSHandte
more a AgiViewFirst(CouqpNandle)
CIDExist aCatAbsent
NAV~xist a CatAbsent
CAVExis at CatAbsent
ECSExist a CatAbsent
OFFExist a CatAbsent
Do White more

AgiViewGet Comp~andLe, ThesisRDS, ThesisRec
Select Case Trim(ThesisRec.Category)

Case "C ID"
CIDExfst =CatPresent

Case "NAV"
NAVExist aCatPresent

Case "CAVI"
CAVExist z CatPresent

Case "1ECS"
ECSExist a CatPresent

Case "OFF"
OFFExist aCatPresent

End Select
more a AgiViewiNext(Comppandte)

Loop

Nuif~odes = 0
If CIDExist Then

Nuiflodes =Nummodes, + 1
CIDMode =Num~odes

End If
if NAVExist Then

Num~odes =Numr~odes; + 1
NAVMode =Num~odes

End If
If CAVExist Then

Nur~odes = Nuiflodes + 1
CAV~ode =Nuii~odes;

End If
if ECSExist Then

Numflodes zNuV~odes + 1
ECS~ode = Num~odes

End If
If OFFExist Then

Num~odes; NuiE~odes, + 1
OFFMode Numt~odes;

End If

'Intiatize aLL mode arrays to zero
Re~im Modecount(Num~odes) As Integer
GraphI .NunSets - Nuai~odes.
For I= 1 To Nwt~odes

ModeCount(I) = 0
Next I

RecCount a 0
more =AgiyiewFirst(Comp~andte)
Do White more

AgiViewGet CompHandte, ThesisROS, ThesisRec

RecCount = RecCoisit * 1

'Set appropriate Mode and update correct ModeCount
Select Case Trim(ThesisRec.Category)

Case "CID"
Mode aCIDMode

Case "NAVII

C.38

Mode a NAV~ode
Case "CAV"

Mode z CAV~ode
Case "ECS"

Mode z ECS~ode
Case "OFFN

Node aOFFMode
Case Else

Nsg~ox "Unrecognized Node at record + Str(RecCount) +'.

Mode a 1
End Select
NodeCoeunt(Node) a NodeCotunt(Node) + 1

If Thesislec.EDSI - XLaoier And Thesistec.EDSI -cc XUpper Then
'Load Data to the Graph
Graphl.ThisSet z Node
Graphl.ThisPoint = NodeCoiumt(Mode)
If Normalize Then

Graphl.Graph~ata a ThesisRec.ACTEFFORT / ThesisRec.PI
Else

Graphi .Graph~ata z ThesisRec.ACTEFFORT
End If
Graph1.XPosoata = ThesisRec.EDSI

'Check for maximum Effort and update if needed
If Y~ax -cThesisRec.ACTEFFORT Then

Y~ax aThesisRec.ACTEFFORT
End If

End If

more = AgiViewNext(Comp~andle)
Loop

'Set mode characteristics
If CIDExist Then

GraphI.ThisSet =CID~ode
Graphl.LegendText = "C/ID11
Graphl.SymboiData =G CROSS PLUS
Graphl.Cotoroata z GBLUE

End If
If NAVixist Then

Graphl.ThisSet =NAVMode
Graphl.LegendText = "NAVI"
Graphl.SymbotData = G-CROSSJTINES
GrapIVI.ColorData = G GREEN

End if
If CAVExist Then

Graphl.ThisSet = CAVMode
Graphi .LegendText ='CORE"
Graphi.Sy,*botData = G-TRIANGLE-UP
GraphI.CotorData a GRED

End I f
If ECSExist Then

Graphl.ThisSet = ECS~ode
Graphl.LegendText " 1E C"s
Graphl.Symbi~oData = G DIAMON
Graphl.CotorData = G BLACK

End I f
If OFFExist Then

Graphl.ThisSet =OFF~ode
Graphl.LegendText ="OFF"
Graphl.SymboiData - G SQuARE
Graphl.Cotor~ata G CBROWN

End if
Screen.NousePointor =Default

End Sub

C.39

Code for DataCony Form

option Explicit

Sub cadCanceL Click (
Unload I rmataConv

End Sub

Sub cmdConvert Click C
Din SeveNan;dle As Integer
Dim Filetitte As String'
Dim SourceSpec As String
Dim DestSpec As String
Dim UpToExt As Integer

'FiietitLe a"GOOO.AGIN
Fitetitle 2 "SHELL.DUF"
If RightCFiLel.Path, 1) <> N\" Then

SourceSpec a Filel.Path + H\" + Filetitle
Else

SourceSpec: Filel.Path + FiLetitle
End If

'Get new FileSpec
UpToixt = InStr(frflhainiCHDialogl.Filename, "1.")

OestSpec 2 Left~friiVain!CMlDialogl.Filename, UproExt) + "Off"
MsyBox "Destination filespec: is + DestSpec
C14iaLog1.Filename aDestSpec
'CHDiaiogl.DefauLtExt = AGI"
CN~ialogl.DefaultExt ="Off"
CHDialogI.Ftags = OFN -PATH14JSTEXIST + OFN-OVERWRITEPROMPT + OFN NIDEREADONLY+

OFN EXTENSIONDI FFERENT
on Error Resume Next
CI4Diatogl.Action xDLG FILE SAVE
If Err a 32755 Then 'user seLcted cancel button

Exit Sub
End If
On Error GoTo 0

KsgBox "Save FiLetitle is + CN~ialogl.Filetitle +".
'Test to see if new file is already open or exists
Screen.MousePointer a HourGlass
If CN~iatogl.Fitetitte = fro~ainiCHDialogl.Filetitle Then

'Agi ViewClose DBHandle 'Close Open Copy
'KiLL CNDiatogl.FiLename 'Delete Previous open copy
'frnm4ainmnmuCtose0B.Enabted z False 'Reset menu selection
'frwi~ain!mnvuViewGraph.EnabLed = False
1frimIain'wnuViewTabte.Enabted a False
'frnV~ainmn~uView~ata.Visibte = False
'frirlainlmnwuCaLBoehm.EnabLed = False
'frir~ainlmnwuStatEval.Enabted a False

'Elself CNDialogl.Filetitte = "THSFILE.AGI"I Then
'Exit Sub 'File update will be automatic upon Cancel -Click

Etseif DirS(CNDiatogl.Fitename) ~ "Then 'If Fite exists
Kill CMDiatogl.Fitename 'Delete unopened coy

End If

'Copy shetl.dbf file to hold new input
Msggox "SourceSpec is 11 + SourceSpec
Msgsox "DestSpec is "+ CNDiaLogl.Fitename
On Error Resume Next
FileCopy SourceSpec, CI4DiaLogl.FiLename
If Err = 55 Then 'File already open

Errt~sg = "Cannot copy an open file. Close and try again."
Nsgflox Err~sg
Screen.MousePointer = Default
Exit Sub

End If
On Error GoTo 0

1Open blank file in dbase format to copy into
SaveHandle 2AgiFreeFiLeo)
FitetitLe C MDiatog1..FitetitLe

C.40

AgiView~pen Savellandle, Fitetitte, OCAUR"
If AgiError) 4> 0 Then

Msg8ox "Fite Creation Error: "4AgiErrorrext()

End If

Copy current file into blank copy for saving
Current DSandte mist refer to a thesisDl type

more a AgiViewFirst(DSHandle)
White miore,

AgiVi " et DO~andie, ThesisROS, ThesisRec
'ThesisRec.BCNIJN OtdThesisRec.BCUMM
'Thesi slec .CATEGORY a OLdThesisRec.CATEGORY
'ThesisRec.RELY a OtdThesisRec.RELY
'ThesisRec.DBSIZE a OldThesisRec.DgSIZE
'ThesisRec.CPLX z OtdThesisftec.CPLX
'Thesislec.TINEUTlL a OldThesislec.TIMEUTIL
'ThesisRec.EXTIM4E OtdThesisRec.EXTI1ME
'ThesisRec.NEMUTIL -OidThesisRec.NMEJTIL
'ThesisRec.STOR a OtdThesisRec.STOR
'ThesisRec.VIRT z OldThesislec.VIRT
'Thesisftec.TURN a OtdThesisRec.TURN
'ThesisRec.ACAP = OLdThesisRec.ACAP
'ThesisRec.AEXP =OLdThesisRec.AEXP
'ThesisRec.PCAP =OtdThesisRec.PCAP
'ThesisRec.VEXP =OLdThesisRec.VEXP
'Thesisflec.LEXP = OtdTheslslec.LEXP
'ThesisRec.MOOP a OldThesisRec.NOOP
'ThesisRec.TOOL = OLdThesisRec.TOOL
'Thesisflec.SCED xOldThesjsRec.SCED
'ThesisRec.RVOL a OldThesisRec.RVOL
'ThesisRec.Pl OidThesisRec.PI
'ThesisRec.ENTROPY = OldThesisRec.ENTROPY
'ThesisRec.ACTKDSI aOLdThesisRec.ACTKDSI
'ThesisRec.ADDKDSI =OtdThesisRec.ADOKDSI
'ThesisRec.MOOKDSI aOtdThesisRec.40ODKSI
'ThesisRec.DELKDSI zOtdThesisRec.DELKDSI
'ThesisRec.EDSI a OtdThesisRec.ESDI
'ThesisRec.ACTEFFORT a OLdThesisRec.ACTEFFORT

AgiVietdAdd SaveHandle, ThesisROS, ThesisRec
If AgiError) <> 0 Then

Msglox "Error adding record to save file." * L() "File results undetermined."
Agi ViewClose (SaveHandle)
Screen.MousePointer =Default
Exit Sub

End If
more = AgiViewNext(DBHandLe)

Wend
AgiViewCtose (Savellandle) 'DiHandle remains open
Screen.MousePointer =Default

End Sub

Sub Form Load (
Dim FiLetitle As String
Dim FileSpec As String

,open new file (agi formats only).
'ThesisHandle =AgiFreeFiteC)
'Filetitle a"SNELL.DBFH
'AgiView~pen ThesisHandle, Filetitle, "CAUR"1
'if AgiError() - 0 Then

'Nsg~ox "File Open Error: "1 + AgiErrorText()
'End If
'Tabtel.ViewHandte =ThesisHandle

'Enable Appropriate Buttons
'more =AgiViewFirst(ThesisHandte)
'If more Then

'cmdCreate.Enabted = False
'Else

' cmdCtear.Enabted =False
'cndSave.Enabted aFalse

'End If

C.41

'Set FiteSpec for Save Diatog Box
'If Right(Fite1.Path, 1) -1 "\ Then

'FiLeSpec a Filel.Path + +V Fitetitle
* ELse

,FiLeSpec a FieL1.Path + FiLetitLe
'End If
10O1iatool.FiLenae =FileSpec

End Sub~

C.42

Code for DBCreate Form

Option Explicit
Dim SampLeFiL.Spec As String

Sub cakiCancet Click 0)
lcndCte2r CLick
Unload frwroSCreate 'Close SanqpLeIand~e is in Unload

*End Subk

Sub cindCtear Click 0)
White Ag'lVielmFirst(Sauptemandte)

£91 ViewDelete SampLe~andte
* If AgiError) <> 0 Then

Nsglox "Record deletion error: ".AgiErrorText()

End if
Wend
cndCreate.Enabted aTrue
cmdCiear.Enabted False
cmdSave.Enabted False

End Sub

Sub cindCreate-CLick (
Dim Num~ec As Integer
Dim EffSOPercent As Single
Dim SD As Single
Dim EAF As Double
Dim EstEffort As Single

Randomize 'Reseeds random number generator
SO = VaL(txtFactorSD.Text)

cmdCtear Click 'Clear existing records if any
Screen.MousePointer = HourGtass
For Nwi~ec = 1 To Int(txtNuiiec.Text)

Debug.Print "Record number "*StrS(Nuw~ec)

SampLeRec.Num =Num~ec
SampteRec.Type IIXXX'S
SaimileRec.RELY =NDEV(1, SO)
SampleRec.DBSIZE aNDEV(1, SD)
Sampleaec.CPLX = NOEV(1. SD)
SanpleRec.EXTIME = NDEV(1, SD)
SampLeRec.STOR = NDEVCI, SD)
Sampteftec.VIRT = NDEVCI, SD)
SanpleRec.TURN = 4DEV(1. SD)
SampteRec.ACAP =NDEV(1. SO)
SampleRec.AEXP = NDEVC1, SD)
SampleRec.PCAP =NDEV(1, SD)
Sampteflec.VEXP =NDEV(1, SD)
SampteRec.LEXP = NDEV(1, SD)
SampteRec.MOOP = NDEV(1. SD)
SanpteRec.TOOL =NDEVC1, SD)
Saqpleftec.SCED = NDEV(1, SD)
SampLeRec.RVOL = NDEV(1, SD)
SampleRec.ACTKDSI = Int((Vat(txtMaxKDSI.Text)- VaL(txtMinKDSI..Text) + 1) Rnd

VaL(txtMinKDSI .Text))
EAF =SampleRec.RELY * SampLeRec.DBSIZE * SarpLeftec.CPLX * Sampteftec.EXTIME
EAF =EAF * SaurpteRec.STOR * SampteRec.VIRT * SampleRec.TURN * SampteRec.ACAP
EAF = EAF * Sanpteftec.AEXP * SampteRec.PCAP * SampleRec.VEXP * SanipleRec.LEXP
EAF = EAF *Sampileec.MQDP * SampteRec.TOOI. * SampLeRec.SCED * SampLeRec.RVOL
SampteRec.PI =EAF
EstEffort =EAF * VatL(txtCoef ficient.Text) * ((SampLeRec.ACTKDSI) VatL(txtExponent. Text))
'EffSDPercent is the % of SD at the midpoint from Min & Max KDSI
EffSOPercent =VaLI(txtEf fortSD. Text) / (VaL (txtCoef fici ent. Text) *(((VaL(txtMin1(DSI.Text)

+ VaL~txt~axKDSI.Text)) / 2) Vat(txtExponent.Text)))
SampLeRec.ACTEFFORT =ExpCLog(EstEffort) + NDEV(O, Log(1 + EffSDPercent)))
AgiViewAdd SampLeHandLe, SamptefiDS, Sa'p~eteec
If AgiError() - 0 Then

Msg~ox "Could not add record "*StrCNumRaec) *'.

cmdClear Click
Exi t Sub;

End If
Next Nui~ec
cmdCreate.Enabted = False

C.43

cmdCLear.Enabled aTrue

ci.ISave.Enabted 2True

Screen.MousePointer x Default
End Sub

Sub csidSave Click (
Dim SavellandLe As Integer
Dim Filetitle As String

'Get new FileSpec
On Error Resume Next
Oi~aLogI.DefauttExt a2AI
04DiaLog1.Ftags a QFM -PATHMUSTEXIST OFN-OVERWRITEPROMPT + OFN HIDEREADOULY +

OFN EXTENSIOWDH FERENT
CHDiatogl.Action - DLG FILE SAVE
If Err = 32755 Then 'Ouser setcted cancel button

Exit Sub
End If
On Error GoTo 0

Debug.Print "Save FiLetitle is + C)~iatog1.Filetitte +
'Test to see if new file is already open or exists
Screen.MousePointer = HourGlass
If CN~iatogl.Filetitte 2 fruilain!CMDiaLogl.FiLetitle Then

AgiViewClose DBHandte 'Close Open Copy
Kitl CMDiaogl.FiLen ame 'Delete Previous open copy
frvrlainmnmuCtoseOB.Enabted aFalse 'Reset menu selection
f rmria ini mnuVi ewGraph. Enabled - False
frw~aininmu~ViewTable.Enabled aFalse
frir~ainmnmuView~ata.Visibte = False
frir~ain~mnu~al8oehm.EnabLed = False
frwri~ainlnmuStatEvat.Enabied =False

Elseif CNDiaLogl.FiletitLe 2 "NEWFILE.AGI"I Then
Exit Sub 'File update will be automatic upon Cancel Click

Elself DirS(CNDialogl.Fitename) ~ "Then 'if File exists
Kill C1NDiatogi.Filename 'Delete unopened coy

End If

IOpen blank file to copy into
SaveHandle =AgiFreeFite()
Filetitle =CMDiatogl.Filetitle
AgiViewopen SaveHandle, Filetitle, "1CAUR"1
If AgiError() - 0 Then

Msg~ox "File Creation Error- "1 + AgiErrorText()
End If

ICopy current file into blank copy for saving
more = AgiViewFirst(SaarpLeHandle)
While more

AgiViewGet SampLeHandle, Samp~eRDS, SampLeRec
AgiViewAdd SaveHandle, SampteRDS. SampLeRec
if AgiError() - 0 Then

Msgsox "Error adding record to save file." *NL() "File results iundetermined."
AgiViewCtose (SaveHandle)
Screen.NousePointer =Default
Exit Sub

End If
more = AgiViewNext(SampteHandLe)

Wend
AgiViewCLose (SaveHandle) 'Sanple~andLe is remains open
Screen.MousePointer = Default

End Sub

Sub Form Load C
Dim FiLetitLe As String
Dim FileSpec As String

'open new file (agi formats only).
Sample~andle =AgiFreeFiteo)
Filetitte a "NEWFILE.AGI"I
AgiView~pen SanpLeHandte, Filetitle, "1CAUR"1
If AgiError() - 0 Then

Msglox "File Open Error: "1 + AgiErrorText()
End If

C.44

Tabtel.View~ardle = Sampte~andie

'Enable Appropriate Buttons
more * AgiViewFirst(Samplean~fdLC)
If more Then

cadCreate.Enabted =False
Else

cm~dClear.Enabled False
cmdSave.Enabted False

End If

'Set FileSpec: for Save Dialog Box
If *ight(Fitel.Poth, 1) <3, "\V Then

FileSpec = Fitel.Path + \ Fitetitle
Else

FileSpec =Filel.Path + Fitetitle
End if
CO~iatog1.Filename = FiLeSpec

End Sub

Sub Form Unload (Cancel As Integer)
Agi~ewiCtose Sample~andle

End Sub

Sub txtEffortS0 LostFocus 0)
If Val(txtEffortSO.Text) < 0# Then

MsgBox "The Effor. Standard Deviation cann~ot be negative.,,
txtEffortSD.Text x1630.0"
txtEffortSO .SetFocus
txtEffortSO.SelStart =0

txtEffortSD.SelLeflgth =64000
End if

End Sub

Sub txtNuaw~ec LostFocus 0)
Dim Num~ec As Integer
Num~ec = IntCVaI~txt~ui~ec.Text))
If Numaec >0 Then

txtNuI~ec. Text = Str(Mui~ee)
Else

ErrMsg = "Please select a positve value for" *NL()
Err~sg = ErrMsg + "the numb~er of records.,"
MsgBox Errl~sg
txtNui~ec.Text " 110"1
txtNum~ec.SetFocus

End I f
End Sub

C.45

Code for GenTable Form

Option Expticit

Sub cudlCanceL Ctick C
Untoad friiTableDS

End Sub

C.46

Code for Mair hes Form

Option Explicit

Function FindDBType () As Integer

Dim VaLidBoehm As Integer
Dim VatidSampte As Integer
Dim ValidThesis As Integer
Dim Vatidotdihesis As Integer
Dim ThesisCategory As String
Dim ThesisSCNue As Integer

'put record pointer on first record
more z AgiVietiFirst(DBHandle)

'Check Boehm's original database structure
AgiVietiGet OsHandle, BoehmRDS, Boehmnec
If IsNutl(Boehn~ec.Nun) Then

Vatidsoehim a False
Elseif IsNutt(goehffaec.Type) Then

Vatid~oehm, a False
Elself IsNuLL(Boehi~ec.LANGtUAGE) Then

VaLid~oehm z False
Elseif IsNuLL(BoehmRec.RELY) Then

ValidBoehm = False
Elself IsNuLLCBoehn~ec.DBSIZE) Then

VaLidsoehm = False
Elseif IsNutl(Boehffltec.CPLX) Then

ValidBoehm = False
Elseif IsNuLL(Boehn~ec.EXTIME) Then

ValidBoehm = False
Elseif IsNuLL(5oehfl~ec.STOR) Then

Valid~oehm z False
Elseif IsNult(Soehm~ec.VIRT) Then

VatidBoehm =False
Elseif IsNuLL(Boehfl~ec.TURN) Then

Vatidsoehm = False
Elself Is~u(l(Boehfl~ec.ACAP) Then

VatidBoehm = False
Etseif IsNull(BoehmRec.AEXP) Then

Validsoelim = False
Elseif IsNuLL(Boehn~ec.PCAP) Then

VaLidl~oehm = False
Elseif IsNull(Boehffgec.VEXP) Then

VaLid~oehm =False
Elseif IsNuLl(Boehn~ec.LEXP) Then

VaLid~oehm = False
Elseif IsNuLL(Boehm~ec.MODP) Then

VaLid~oehm = False
Elseif IsNull(Boehn~ec.TOOL) Then

VaLid~oehm = False
Elseif IsNuttCBoehm~ec.SCED) Then

Vatidfloehm = False
Elself IsNullCBoehn~ec.RVOL) Then

ValidBoehm = False
Elseif IsNull(9oehm~ec.PI) Then

Vatidsoehm = False
Elseif IsNuLt(Boehm~ec.Node) Then

ValidBoelnm = False
Elself IsNuLL(Boehin~ec.TOTKDSI) Then

Vatidloehm = False
Elseif IsNuLL(Boehm~ec.ADJKDSI) Then

VaLidl~oehm = False
Elseif IsNuLL(Boehm~ec.NOMEFFORT) Then

VatiidBoehm =False
Elseif IsNuttCBoehm~ec.ESTEFFORT) Then

Vatildoehm =False
Elseif IsNult(Boehm~ec.ACTEFFORT) Then

Vat idsoelm z False
Else

Validsoehm =True
End If
If Validsoehm Then

C.47

FindDSType a oehmDs
sMsglax noatabase is *oehmis original format."
Exit Function

End If

'Check Sample database structure
AgiVieW~et DiHandLe. SaaqpLeRDS, Sarpleteec
if Is~utiCSamupleRec.NLu) Then

VaLidSdimpe a False
Elseif IsNuLLCSaiiple~ec.Type) Then

VaLidSampje a False
ELseif IsNu(L(SairpLeftec.RELY) Then

Vat idSairpte a False
Elseif IsI~uLI(SaarpleIec.DBSIZE) Then

validSairple = False
Etseif IsNulL(SalrpteRec.CPLX) Then

validsample z False
Elseif IsNulL(SairpLeRec.EXTIME) Then

VatidSaurple = False
Elseif IsNuiL(SalrpteRec.STOR) Then

vat idSairpte = False
Elseif IsNuLL(SalrpleRec.VIRT) Then

ValidSample =False
Elself IsNuiL(SamrpteRec.TURN) Then

VatidSairpte =False
Etself Isutdul(SairpteRec.ACAP) Then

VaLidSamrpte a False
Elseif IsNuLLCSamrpleRec.AEXP) Then

VatidSairple x False
Elself IsNu~t(SampLeRec.PCAP) Then

ValidSairple =False
Elseif IsNuLL(SafipLeRec.VEXP) Then

VaLidSaarple =False
Etself IsNutL(SaerpteRec.LEXP) Then

ValidSampte -False
Etseif IsNuLL(SampteRec.MOOP) Then

VatidSampte = False
ELself IsNuLL(SairpteRec.TOOL) Then

VatidSampte = False
Elseif IsNutiCSampteRec.SCED) Then

VatidSalrple = False
ELseif IsmuIL(SamrpteRec.RVOL) Then

VaLidSample z False
Elseif IsNuLL(SaarpleRec.PI) Then

VaLidSamrpLe = False
Etseif IsNu(LLSampLeRec.ACTKDSI) Then

VatidSample =False
Etself IsNuit (SamtrpeRec.ACTEFFORT) Then

VaLidSairpte = False
Else

validSampte =True
End If
if ValidSairpte Then

FincD)BType =SaapteOB
'Msgsox "Database is in samrple format."
Exit Function

End If

'Check Thesis database structure
AgiViewGet DiHandLe, ThesisRDS, ThesisRec
AgiViewGet OS~andie, OtdThesisRDS, OtdThesisRec
VaLidOtdThesis a False
If IsNuIL(ThesisRec.BCNUM4) Then

VaLidThesis z False
Etseif Is~utll(Thesisflec.Category) Then

VaLidThesis z False
Etself IsNutL(ThesisRec.RELY) Then

VatidThesis zFalse
ELseif IsNuLL(ThesisRec.DBSIZE) Then

VatidThesis aFalse
Elseif IsNuLL(Thesisftec.CPLX) Then

ValidThesis = False
Etseif IsNuiL(ThesisRec.TINEUTIL) Then

VatidThesis = False

C.48

Etself IsNuIL(ThesisRec.EXTI14E) Then
VaLidThesis a False

Elseif ls~ult(ThesisRec.M4EIETIL) Then
ValidThesis a False

Etseif IsNultCThesisRoc.STOR) Then
Vat idThesis a False

Etsoif IsgutLLThesisROc.VIRT) Then
VoL idThesis a False

Elseif IsNulL(ThesisRec.TURN) Then
ValidThesis u False

Elseif Is~utt(ThesisRec.ACAP) Then
ValidThesis a False

ELs*if lsNuttCThesisReC.AEXP) Then
Vat idThesis = Fatse

Elself IsNu~tlThe~jsReC.PcAP) Then
Vat idThesis a False

Etself IsNu(I(ThesisRec.VEXP) Then
ValidThesis a False

Elseif lsNuttCThesisRec.LEXP) Then
VatidThesis = False

Elseif 1s~ull(ThesisReC.MODn) Then
ValidThesis a False

ELseif lsNutlCThesisRec.TOOL) Then
VaL jdThesis a False

Etself IsNutt(Thesilstec.sCED) Then
ValidThesis z False

Etself IsNull(ThesisRec.RVOL) Then
Vat idThesis a False

Elseif IsNutL(ThesisRec.PI) Then
Vat idThesis aFatse

ELself ls~utlCThesisRec.ENTROPY) Then
ValidThesis = False

Elself IsNuIL(Thesisftec.ACTKDSI) Then
VaLidThesis = False

ELseif IsNutlCThesisRes.ADDKDSI Then
ValidThesis a False

Elself IsNuLL(ThesjsRec.MOOKDSI) Then
VatidThesis zFalse

Elself ls~ulLCThesisRec.DELKDSI) Then
ValidThesis x False

Etseif IsMuLlCThesisRec.EDSI) Then
Vat idThesis z False
if Not IsNuLt(OldThesisRec.ESDI) Then

vatidOtdThesis a True
End If

Etself Is~ull(ThesisRec.ACTEFFORT) Then
ValidThesis 2 False

Else
Vat :dThesis =True

End I f

if VaL~dThesis Then
FindDSType =ThesisOB
'IMsgflox "Database is in Thesis format."
ThesisCategory =Trim(ThesisRec.Category)
Thesfs8CNum = Int(ThesisRec.BCNIJN)
more =AgiViewNext(OSHandte)
Do while more

AgiVietiGet DBHandle, ThesisADS, ThesisRec

1Thn If ThesisCategory - Trim(Thes isRec. Category) or ThesisBCNumi (Int(ThesisRec.BCMUMB)

FindDBType z CompThesisDB
'Msglox "Database is in composite Thesis format."
Exit Function

End If
ThesisBCNun z Int(ThesisRec.BCNIM)
more a AgiVieiw~ext(DB~andte)

Loop
Exit Function

End if

If VatidoidThesis Then
Fin1DOBType a ThesisOfl
Nsg~ox "Database is in Old Thesis format and needs conversion."

C.49

End I f

msgeox "Database is *.df or *.agi format but" iL "b~ record structure does not match
required formats."

F i ndBType a UnknotwnD

End Function

Sub mnuiCaLeoehm Click C
Select CaseDI)Type

Case Ioehws
Frm~atl.Show

Case SaqpleDS
FrmSiapCaL .Shobi

Case ThesisOB, CoinpThesisOl
FrmThesCal .Show

Case UnknoiwSD
End Select

End Sub

Sub omuCtoseOS Click C
AgiViewCLo~seAL I
muiCLoseDB.Enabled a False
mnuVietiGraph.Enabted a False
mnuViewiTabLe.EnabLed a False
wnuView~ata.VisibLe a False
unuCaLloehm.EnabLed a False
mmuStatEvaL.Enabied a False

End Sub

Sub mnuCreateloehnVB..Ctick C
friiveCreate.Show

End Sub

Sub mnwuCreateCcopThesisDS..CLick C
frmCoerpCreate.Show

End Sub

Sub mnuCreatemhesisD8Clikk)
frmThsCreate.Show

End Sub

Sub mu~q.ataConv Click C
frm~ataConv.Show

End Sub

Sub imuExit Click C
AgiVieti~toseAl I
End

End Sub

Sub mnupenO3 Click C
AgiViewtiC~seALt 'Close any open D~s before open another
on Error Resumae Next
CNDialogl.Flags =OFN FILEWJSTEX1ST
CNDiatogl.Action DIG FILE OPEN
If Err =32755 Then 'CDERR CANCEL

Exit Sub
End I f
on Error GoTo 0

DBFiLeSpec: a C4Oiatogl.FlLename
DBFiLeName = CHDiatogI.Fitetitte

OSHandle a AgiFreeFiteo)
AgiViewopen DBHandLe, DBFileSpec, "RO
if AgiErroro) - 0 Then

Select Case AgiErroro)
Case AGIE DBOPEN

'Errks~g "Dnatabase is already open."
Case AGIE NOTEXIST

Errusg "DVatabase not found. Please check path and fitename."1
Case AGIE BADFILE

Err~sg = "Specified file is corrupted or" + NbC) + "is not a '.dbf or *.agi file

C.50

forest."
Case Else

Err$Isg =AgifrrorTextO)
End Select
NsgBox Err~sg + NLO + "Error#: + Str(AgiErroro).

Else
more = AgiViewFirstCOl~andte)

* If more Then
amuCtoteDB.Enabled a True
OlType a FindD$TypeC)
Select Case DUType

* ~Case SoeheO
.riuVlewGraph.Enabled a True
mniu~iewTabte.Enabted x True
mnuView~sta.Visibie a True
mnuCalgoehM.Enobted z Trtn
iwnuStatEval.Enabted a True

Case SamLeDB
aruViewGraph.EnabLed aTrue
wuj~iewTabLe.Enabted a True
mnuViewDsata.Visible a False
mnuuCalloehm.Enabted 2 true
mnuStatEval.Enabied = False

Case ThesisOB, CompThesisDS
umuViewGraph.Enabled =True
imuyieuTable.Enabled a True
nmuiei~ewta.Visibie a False
.nualBoehm.EnabLed aTrue
wrmuStatEval.Enabted a True

Case UnknowrOl
Err~s9 "Format of selected database is not recognizeabte." + ML()
ErrMsg z Erri4sg +"Only viewing is permitted."
MsgBox ErrNsg
mnuViewGraph.Enabled z False
mnuViewTable.Enabled = True
wmuView~ata.VisibLe = False
mnuCatSoehm.EnabLed = False
wriuStatEvat.Enabted z False

End Select
Else

Agi ViewClose DU~andLe
Err~sg = "Database exists but has zero records."
Msg~ox Errlsg

End If
End If

End Sub

Sub nmuxStatEvat Click (
Select Case DBType

Case BoehmDg
frmStat~oehm.Show

Case SampteDS
Case ThesisDO

frmThesStat .Show
Case CoqpThesisOB

frmThesStat .Show
Case UnknowrO9

End Select
End Sub

Sub mn~uView~ata Click C
F rfloehm.Show

End Sub

Sub imu~iewGraph CLick (
Select Case OSType

Case BoehmDB
fru~oehmGraphi.Show

Case Sairpteoll
frm~oohmGrq*h. Show

Case ThesisDO
f ruThesGraph .Show

Case CompThesisDB

C.51

f rm~omGrah. Show
Case UnknowiDl

End Select
End Sub

Sub~ u'ruNewTable CMick C
Setect Casa OlType

Case Boaho3S
frm~oohmTab(@.txtOBName.Text DBOFiteSpec
'frmaoelwTabl*.Tsblel.Fite~am@ DSFiteSpec
fr~oehmlTabLe.Tab~e.iew~eante DiBNtdte
frwdoehmTable.Shom

Case Smil aDS
f raD-mtabt*.txtOBNam.T~xt - DBFiteSpvc
frm~aqpTabte.Tobte1.FfteiNam a DIOi eSpec
framinpTabL..Tabl.1 .Viewiadte a S~andte
fru~ampTabte.Show

Case ThesisDS* CampThesisOB
frmThesTabte.txtOB~ama.Text a DSFiteSpec
frmThesTabte. Tabtel .ViewN "dte a OB~andle
frnThesTab~e.Show

Case UnkrwywrQS
frmTabteDO.txtOg~ame.Text a DBFiteSpec
frmTabteDS.Tab(*l.Vieti~andte z Di~andie
frvnTabteDB.Show

End Setect
End Sub

C.52

Code for SampCal Form

Option Explicit

Sub cmdCatibrate Click C)
Dim Mode As String
Dim ModeCount As Integer
Dim RecCount As Integer

Dim CoeffOnly As Single
Dim ExpOnty As Single
Dim Coefficient As Single
Dim Exponent As Single

Dim T.lQ As Double
Dim SuWLQ As Double
Dim SUM02 As Double
Dim TempLog As Double
Dim TempOiv As Doubte
Dim a0 As Integer
Dim al As Double
Dim a2 As Double
Dimi dO As Double
Dim dl As Double

if optOrganic.Vatue a True Then
Mode a "ORGN
ExpOnty z 1.05

Elself optSemiD.VaLue x True Then
Mode a "SO"
ExpOnty - 1.12

ELself optEuaedded.Value z True Then
Mode z "E"
ExpOnly a 1.2

EtseIf optAtlData.VaLue u True Then
Mode x "ALL"
ExpOnty a 1.16

Else
Mode - HMKa
Exponty a 1.16

End If

SampteHardte : DBHandte
more z AgiViewFirst(SampteHandle)

SUN"Q z 00
Sumw2 z 0#
ModeCount = 0
txtModeTotat.Text = FormatS(ModeCount, "##00")
RecCount = 0
al z0
a2 z 00

dO z 00
dl = 00

Do While more
RecCount = RecCourt + 1
txtRecTotal.Text a FormatS(RecCount, "#1100")
AgiViewGet Samptelandte, SampteRDS, SampteRec
If Trim(SampleRec.Type) a Trim(Mode) Or Mode = "ALL" Then

ModeCount = ModeCount * 1
txtModeTotat.Text a FormotS(ModeCount, "900"1)

'Calculate sues for Coefficient only
TempQ a SampteRec.PI * (SampteRec.ACTKDSI " ExpOnty)
SumPM = SumMM + SampleRec.ACTEFFORT * TempO
SumQ2 = SumQ2 + TempO * TeMpO

'Calculate sums for Coefficient and Exponent
TempLog a Log(SampteRec.ACTKDSI)
TempDlv a Log(SampleRec.ACTEFFORT / SampteRec.PI)
al z al + TempLog
a2 a a2 + TempLog * TempLog
dO a dO + TempOiv

C.53

di = dl + Tempiv * Temi~og

End If
more a AgiViewuI~extCSanpte~afldL)

Loop

If HadinCou.at 3, 0 Then
CoeffOnly xSLWNG / SuQ2
&0 a ModeCount
Coefficient a Exp((a2 *dO - 01 *dl)I/ (&a *aa - al 'al))
Exponent a (aO di - al * dO) / (&0'? a2 - l*al)

End If

txtCoeff~nty.Te~ct UFormt$(CoeffO'ily, m0.0000u)
txtCaefficient.Text zForumtS(Coefficient, uO00OON)
txtExponent.Text a FormmtSCExponent, "0.0 M)

End Sub

Sub cmdCancet Click C
Unload Fr;SaiupCsL

End Sub

Sub Form Load C
txt~lName.Text aDiFiLeSpec

End Sub

C.54

Code for SaumTbt Form

Option Explicit

Sub cmdCancet Click ()
Unload frmSampTabte

Fnd Sub

C.55

Code for ThesCaL Form

Option ExpLicit

Sub cmdCaLibrate Click C)
Dim Category As String
Dim CategoryCount As Integer
Dim RecCount As Integer

Dim CoeffOnty As Single
Dim ExpOnly As Single
Dim Coefficient As Single
Dim Exponent As Single
Dim BCT As Double

Dim Teo As DoubLe
Dim SUMM As Double
Dim SumQ2 As Double
Dim TempLog As Double
Dim TempDiv As Double
Dim aO As Integer
DW al As Double
Dim a2 As Double
Dim dO As DoubLe
Dim dl As DoubLe

If optCID.VaLue = True Then
Category "CID"
ExpOnLy 1.05

ELself optNAV.Value = True Then
Category 2 "NAV"
ExpOnly = 1.12

ELself optCAV.VaLue = True Then
Category a °CAV"
ExpOnty = 1.2

Etself optECS.VaLue = True Then
Category = "ECS"
ExpOnty = 1.28

Etself optOFF.Value = True Then
Category = "OFF"
ExpOnty = 1.36

ELself optAlLData.VaLue = True Then
Category = "ALL"
ExpOnty = 1.16

Else
Category = "UNK"
ExpOnty = 1.16

End If

ThesisHandLe = DBHandle
more = AgiViewFirst(ThesisHandte)

SwurM Q O0
Su,?2 = 00
CategoryCount = 0
txtCategoryTotal.Text = FormatS(CategoryCount, "#NO")
RecCount a 0
al = 09
a2 = 0#
dO = 09
dl a 0#

Do While more
RecCount z RecCount + 1
txtRecTotat.Text z FormatS(RecCount, "9990")
AgiViewGet ThesisHandle, ThesisRDS, ThesisRec
If Trim(ThesisRec.Category) = Trim(Category) Or Category H "ALL" Then

CategoryCount = CategoryCount + 1
txtCategoryTotat.Text = FormatS(CategoryCotrnt, "HnO ")

'Calculate sums for Coefficient only
BCT a ThesisRec.EDSI I ThesisRec.ACTKDSI
TempA = ThesisRec.PI * (ThesisRec.ACTKDSI " ExpOnLy) * BCT
SUlff = SulM4Q + ThesisRec.ACTEFFORT * TempQ

C.56

SuiQ2 x SumZ + TempQ *TeMA

'CatcuLate sum for Coefficient and Exponent
TempLog a Log(ThesisRec.ACTKDSI)
Two ~iv a Log(ThesisRec.ACTEFFORT (ThesisRec.PI BCT))
al a al + TempLog
a2 a a2? TempLog *TenpLog
dO = dO + TeapDiv
dl xdl + TempOiv * TempL~og

End If
more a AgiViewNext(ThesiSHandia)

Loop

If CategoryCount >0 Then
CoeffOnty a SwMOQ / SuwQ2
aO =CategoryCount
Coefficient a Exp((a2 * dO - al * dl) I(aO 'a2 - al ali))
Exponent = (aO dl - al * dO) / (aO a2 - al * al)

End If

txtCoeff~nLy.Text =FormatS(Coeff~nty, "10.0000"1)
txtCoefficient.Text = FormatS(Coefficient, "10.000011)
txtExponent .Text = Format$(Exponent, "10.0000"1)

End Sub

Sub cmdCancet-Ctick (
Unload frmThesCaL

End Sub

Sub Form Load C
txtDBNane.Text =DUFileSpec

End Sub

C.57

Code for ThesStat Form

Option Explicit

Sub cmdCatc CLick ()
Dim Category As String
Dim RecCategory As String
Dim CategoryCount As Integer
Dim RecCount As Integer

Dim Pi As Double
Dim BaseCoefficient As Single
Dim BaseExponent As Single
Dim PredCoefficient As Single
Dim PredExponent As Single
Dim EstEffort As Double
Dim LogEstEffort As Double
Dim ACTEFFORT As Single
Dim LogActEffort As Double
Dim ActEfflean As Double
Dim LogActEffNean As Double

Dim ThesisHandle As Single

Dim SumnctEff As Double
Dim SumLogActEff As Double
Dim SSE As Double
Dim LogSSE As Double
Dim LogSSTO As Double
Dim SumHRE As Double
Dim SumLog4RE As Double
Dim R2 As Single
Dim RRMS As Single
Dim KRE As Single
Dim LogMRE As Single
Dim MREMean As Single
Dim.PredLevet As Single
Const MRELimit = .25
Dim ImproveLeveL As Single

If optCID.VaLue a True Then
Category = "CID"

Elself optNAV.VaLue = True Then
Category = "NAV"

Etself optCAV.VaLue a True Then
Category = "CAV"

Eiself optECS.Vatue = True Then
Category = "ECS"

ELself optOFF.Value = True Then
Category - "OFF"

Etself optAtLData.Vatue = True Then
Category = "ALL"

Else
Category = "UNK"

End If
Category = Trim(Category)

BaseCoefficient = VaL(txtBaseCoeff.Text)
BaseExponent a Val(txtBaseExp.Text)
PredCoefficient = Val(txtPredCoeff.Text)
PredExponent = Val(txtPredExp.Text)

ThesisHandLe = DBHandle
'AgiVieiiapen BoehmHandte, "boehm's.dcbf", "R"
'Debug.Print AgiErrorText()

'Find Average of Actual Efforts in Real and Log domains
SumActEff a 0#
SumLogActEff =#
CategoryCount = 0

more = AgiViewFirst(ThesisHandLe)
Do While more

AgiViewGet ThesisHandle, "CATEGORY(S)", RecCategory

C.58

If Category a Trim(RecCategory) Or Category at "ALL" Then
CategoryCount a CategoryCount + 1
ItxtNum~ode.Text z FormatS(CategoryCount, 1100")

AgiView"at Thesis~andLe, NACTEFFORT(F)I' ACTEFFORT
SumActEff aSuiructEff + ACTEFFORT
SusLogActEff a SuwtogActEff + Log(ACTEFFORT)

End If
more a AgiViewNextCTheslsHandLe)

Loop
If CategoryCount >0 Then

ActEff~ean a Sum~ctlff / CategoryCount
LogActEff~ean x SuitogActEff /CategoryCount

EUse
MsgBox "No Records found with matching Node."1
Exit Sub

End If

'CaLuctate Statistics
SSE a 00
LogSSE =O0
LogSSTO a 0#
SwIW4RE a0W
SumLogI4RE =O0
PredLevet = 01
ImproveLevet =01

RecCount = 0
CategoryCount a0

more = AgiViewFirst(Thesis~andte)
txtNumV~ode. Text = FormatSCCategoryCount, "WWWO")
Do White more

RecCount = RecCount + 1
txtNum~ec.Text = FormatSCRecCount, a~u
AgiViewGet Thesis~andle, ThesisROS, ThesisRec
If Category z Trim(ThesisRec.Category) Or Category ="ALL" Then

CoktegoryCount z CategoryCount + 1
txtNum~ode.Text a Format$(CategoryCount, "W##O")
IP BoehII~.c.RELY * oehm~ec.DBSIZE * Boehm~ec.CPLX *Boehmnec.EXTIME

'PT = PI * Boehmiec.STOR * goehi~ec.VfRT * Boeha~ec.TURN * Boehm~ec.ACAP
aP PI * Boehw~ec.AEXP * BoehI~ec.PCAP * Soehn~ec.VEXP * Boehm~ec.LEXP

IPI = PI Boehm~ec.MODP * Boehmnec.TOOL, * Boehmaec.SCED * Boehmnec.RVOL
EstEffort aThesisRec.PI * PredCoefficient * (ThesisRec.ACTKDSI ^PredExponent)*

(ThesisRec.EDSI / ThesisRec.ACTKDSI)
LogEstEffort = Log(EstEffort)
NRE = Abs(ThesisRec.ACTEFFORT - EstEffort)
LogMRE = Abs(Log(ThesisRec.ACTEFFORT) -LogEstEffort)

'CaLculate sums
SSE = SSE + MRE '2
LogSSE = LogSSE + LogFNRE -2
LogSSTO z LogSSTO +(Log(ThesisRec.ACTEFFORT) - LogActEffMean) -2
SumNRE a SumRE + MRE
If MRE / ThesisRec.ACTEFFORT - NRELimit Then

PredLevet = PredLeveL + 1W
End If
If NRE <Abs(ThesisRec.ACTEFFORT - (ThesisRec.Pl * BaseCoefficient*

(ThesisRec.ACTKDSI 'BaseExponent) * (ThesisRec.EDSI / ThesisRec.ACTKDSI))) Then
InproveLevel = ImproveLevet + VW

End 1 f
End I f
more = AgiViewwext(Thesis~andle)

Loop
'AgiViewCtose BoehmHandte

If CategoryCount > 0 Then
R2 = 1 -(LogSSE *(CategoryCount M /) (LogSSTO *(CategoryCount -2))

RRMS = (Sqr(SSE ICategoryCount)) IActEffMean
MREMean a SuriIRE /CategoryCount
PredLeveL = (PredLevet / CategoryCount) * 100
ImproveLevel = (ImproveLeveL / CategoryCount) *100

End If

Text3.Text x FormatS(R2, "10.0000")
Text4.Text a FormatS(RAMS, "10.000"1)

C.59

TextS.Text a oumatSQ4RE~ean, U0.0011)
Text6.Text a Formet$CPredleveL, 1100.064) + %
Text9.Text a ormat$(lvuproveLevet, 1100.094) + * 0

End Sub

Sub cumICancel Click 0)
Unload frmThesStat

End Sub

C.60

Code for ThesTabL Form

Option Explicit

Sub cmdCanceL Click ()
Unload friThesTable

End Sub

C.61

Code f or ThesYAxa Form

Option Explicit

Sub cmdCancel Click C
Unload fruVYAxis

End Sub

Sub cmdOK Click C
MornState a Norm Off
fruThesGraujilcmilform.Enabled z False
If optEXTINE.Vatue = True Then

YPlck a Executable Time
frmrhesGraphlGraphT.LeftTitle a NEXTIHE"

Elself optTimeUtil.Vaiue a True Then
YPlck a Time Util
frmThesGraphTGraphl.LeftTitte a "Time V'

Elself optStor.Vatue a True Then
YPick z Storage
frmThesGraphlGraphl .LeftTitLe = 11STOR11

Elseif optHemutiti.Vatue z True Then
YPick a Rem Util.
frmThesGrapK1GraphI.LeftTitLe ="Hemn V"

Elseif optPi.Value aTrue Then
YPick a Pi Hutt
frmThesGrap-h1Graph1.LeftTitte = 1PI1"

ELseif optAexp.Vmlue a True Then
YPick z Analyst Experience
frmThesGraphlGraphl .LeftTitte = AEXPO

Etseif optLexp.Vatue z True Then
YPick 2LangExperience
frmThesGraphiGraphl .LeftTitle ="LEXP"1

Elself optActKDSI.Value = True Then
YPick z Actual KDSI
frmThesGraph!Graphl.LeftTitte = "Actual KDSI"

Etseif optEDSI.VaLue a True Then
YPick =Equivaltent DSI
frmThesGraphiGraphL.Leftfitle z"Equiv KDSVI

Elseif optActEffort.Value = True Then
I rmThesGraph Icmdkorm.Enabl ed =True
YPick z Actual Effort
frmThesGraphiGraphll.LeftTitle = I'M"

End If

Unload frmYAxis
End Sub

Sub Form Load C
Select Case YPick

Case Executable-Time
optEXTIHE.Vatue = True

Case Time Util
optTii~eliti.Vatue =True

Case Storage
optStor.Value = True

Case Hem Util.
optk~Uw~tiL.Vatue =True

Case Pi Hutt
optPi.Value zTrue

Case Analyst Experience
optAexp.VQatue zTrue

Case LangExperi ence
optLexp.Value a True

Case Actual KDSI
optActlDSI.Value zTrue

Case Equjivalent DS1
optEDSI.VatUe z True

Case Actual Effort
optActEffort.Value = True

End Select
End Sub

C.62

Code for ThsCreait Form

Option Explicit
Dim ThesisFiteSpec As String

Sub cmdCancel Click (
'cmdClear-CLick
Unload friiThsCreate 'Close SampLe~andle is in Unload

*End Sub

Sub cadClear Click (
While Ag'iViewFirstCThesisffandle)

AgiVieW*telte ThesisHandle
If AglError) <> 0 Then

Nsgsox "Record deletion error: + AgiErrorTexto)
End If

Wend
cmdCreate.EnabLed z True
cnuiCtear.Enabted =False
cmdSave.Enabted a False

End Sub

Sub cmdCreate Click (
Dim NumBC As Integer
Dim Naum~ec As Integer
Dim EffSDPercent As Single
Dim SO As Single
Dim EAF As Double
Dim EstEffort As Single
Dim PrevSC As ThesisType
Dim LearnEffect As Double

'Dim EstEffort As Single

SO z VaL~txtFactorSD.Text)

cmdCtear Click 'Clear existing records if any

'Create record from Development Data
ThesisRec.BCNUM a 1
If optCID.Vatue a True Then

ThesisRec.Category a"1CID"1
Etself optNAV.VaLue = True Then

ThesisRec.Category z "1NAVy"
Etself optCAV.Value = True Then

Thesisftec.Category = "#CAV$"
Etself optECS.Vatue = True Then

ThesisRec.Category = "4ECS"1
Etseif optOFF.Value x True Then

ThesisRec.Category z "OFF"
End If
ThesisRec.RELY a NDEV(1, SO)
ThesisRec.DBSIZE x NDEV(1, SD)
ThesisRec.CPLX a NDEV(1, SD)
ThesisRec.TIMEUTIL a VaL(txtDevTime.Text)
ThesisRec.EXTIM4E =FindlEXTIME(Val(ThesisRec.TIMEUTIL))
ThesisRec.MEMUTIL aVa((txtDev14em.Text)

ThesisRec.STOR z FinidSTOR(Val(ThesisRec.N4EWJTIL))
ThesisRec.VIRT a NDEV(1, SD)
ThesisRec.TURN a NDEV(1, SD)
ThesisRec.ACAP a NDEV(1, SD)
ThesisRec.AEXP a NDEV(1, SD)
Thesisftec.PCAP a NDEV(1, SD)
ThesisRec.VEXP xNDEV(1, SD)
ThesisRec.LEXP a NDEV(1, SD)
ThesisRec.MOOP a NDEVC1, SD)
ThesisRec.TOOL a NDEV(1. SD)
ThesisRec.SCED a NDEV(1, SD)
ThesisRec.RVOL a NDEVC1, SD)
EAF a ThesisRec.RELY * ThesisRec.DSSIZE *ThesisRec.CPLX *ThesisRec.EXTIME

EAF = EAF * ThesisRec.STOR * ThesisRec.VIRT * TheslsRec.TURN * ThesisRec.ACAP
EAF z EAF * ThesisRec.AEXP * ThesisRec.PCAP * ThesisRec.VEXP *ThesisRec.LEXP
EAF z EAF * ThesisRec.MODP *ThesisRec.TOOL * ThesisRec.SCED * ThesisRec.RVOL
ThesisRec.PI z A

C.63

ThesisRec.EHTROPY a 10
TheuisRec.ACTKDSI a Vat(txtDevlCDSI.Text)
ThesisRec.ADOKDSI a ThesisRec.ACTKDSI * (Vat(txtPerAdd.Text) / 100) * OEV(l,

Vat(txtPerSD.Text) / 100)
ThesisRec.NODKDSI a ThesisRec.ACTKDSI * (VatL(txtPer~od. Text) / 100) * NOEV(1,

Val(txtPerSO.T~xt) / 100)
ThesisRec.DELKDSI a ThesisRec.ACTKDSI * (Vat(txtPer~eL.Text) / 100) * NOEV(1.

Val(txtPerSD.Text) /100)
ThesisRec.EDSI *FindEDSI (Vat (ThesisRec.ADDKDSI), Vat CThesisRec.1CDKDSI).

Vat(ThesisRec.DELKDSI))
EstEffort a EAF * VatL(txtCoef ficient.Text) * (ThesisRec.ACTKDSI VaL (txtExponent. Text))

(Thesisftec.EDSI / Thesjslec.ACTKDSI)
'EffSDoercent is the % of SD at the EDSI vaLue
EffS0Percent a Vat(txtEffortSD.Text) / ThesisRec.EDSI
Thesislec.ACTEFFORT x Exp(Log(EstEffort) + NDEV(0. Log~l +EffSDPercent)))
AgiViaeiAdd ThesisHandle, ThesisRDS, ThesisRec
If AgiError() - 0 Then

Msglox "CouLd not create first record.,,
cmdClear CLick
Exit Su6k

End if

'Create Time series records for remaining block changis
PrevUC =ThesisRec 'Hotd prior years data
Screen.NousePointer z HourGlass
For Num~ec z 2 To IntCVat(txt9CNui.Text))

ThesisRec = PrevBC 'Intialize this btock change data
ThesisRec.BCNHUM a Mumec
If PrevBC.TIM4EUTIL < 959 Then

'Increase at KDSI growth rate
ThesisRec.TIMEUTII. a PrevSC.TIMEUTIL * (19 + ((PrevSC.ADDKDSI PrevBC.DELKDSI)

PrevSC.ACTI(DSI))
EL so

' Increase half remaining
ThesisRec.TIMEUTIL = PrevBC.TIMEUTIL + (.5 * (000 - PrevSC.TINEUTIL))

End If
If ThesisRec.TIMEUTIL > 100# Then

Nsglox "The Throughput growth has exceed 100% capacity'4 + NL() + win block change " *
Str(Numiec) + *."1

Exit For
End If
ThesisRec.EXTIME z FindEXTIME(VatCThesisRec.TIMEUTIL))
If PrevOC.MEMUTIL < 959 Then

'Increase at KDSI growth rate
ThesisRec.MEMUTIL = PrevOC.NME9JTIL * (19 + ((PrevSC.ADOKDSI - PrevSC.OELKDSI)

PrevSC.ACTKDSI))
Else

' Increase half remaining
ThesisRec.MEMUTIL = PrevSC.MEMUJTIL + (.5 * (1009 PrevSC.NEMJTIL)) 'add half

remaining
End If
If ThesisRec.MEMUTIL > 100# Then

Msgeox "The memory growth has exceed 1001 capacity" + NIC) + "in bLock change +
Str(Nwm~ec) + "1."

Exit For
End If
ThesisRec.STOR z FinidSTOR(VaL(ThesisRec.MEM4UTIL))
LearnEffect z FinidLearn(Int(ThesisRec.BCNUIM))
'Spread Learning Effect to AEXP and LEXP
ThesisRec.AEXP zPrevBC.AEXP * Sqr(LearnEffect)
ThesisRec.LEXP a PrevBC.LEXP * Sqr(LearnEffect)
EAF aThesisRec.RELY * ThesisRec.DBSIZE * ThesisRec.CPLX * ThesisRec.EXTINE
EAF =EAF * ThesisRec.STOR * ThesisRec.VIRT * ThesisRec.TURN * Thesisflec.ACAP
EAF z EAF * ThesisRec.AEXP * ThesisRec.PCAP *ThesisRec.VEXP * ThesisRec.LEXP
EAF a EAF * ThesisRec.NOOP * Thesisftec.TOOI. * ThesisRec.SCED * Thesistec.RVOI.
ThesisRec.PI a EAF

ThesisRec.ACTKDSI z PrevBC.ACTKDSI + PrevBC.ADDKDSI - PrevBC.DELKDSI
Thesistec.ADDKDSI 2 ThesisRec.ACTKDSI * (Val(txtPerAdd.Text) / 100) * NDEV(1,

VaL~txtPerSD.Text) / 100)
ThesisRec.NGOKDSI z ThesisRec.ACTKDSI *(Val~txtPerl~od.Text) / 100) * NDEVC1.

VaL(txtPerSD.Text) / 100)
ThesisRec.DELKDSI z ThesisRec.ACTKDSI * (Vat~txtPer~et.Text) / 100) * NDEVC1,

VaL(txtPerSD.Text) / 100)

C.64

ThesisRec.EDS1 FindEDSICVaI(Thesisgec.ADDKDSI), VaL(ThesisRec.MODKDSI),
Vat(ThesisRec.DELKDSI))

Estfffort a EAF Vat (txtCoef fic ient. Text) * (ThesisRec.ACTKDSI Vat (txtExporwnt. Text))
CThesisRec.EDSI / ThesisRec.ACTKDSI)

'EffSDPercent is the % of SO at the EDSI value
EffSOPercenta VaL(txtfffortSD.Text) / ThesisRec.EDSI
ThesisRec.ACTEFFORT a ExpCLog(EstEffort) + NDEV(O, Log(1+ EffSoPercent)))
AgiVie,~dd ThesisHandle, ThesisRDS, ThesisRec

* ~if AgiError() - 0 Then
* ~NsgBox "File Error: Could not add block change + Str(Ntmec) ".

cu~dClear Click
Exit Sub-

End If
PreviC a ThesisRec 'Hold previous block change data

Next NwieOc
cmdCreate.EnabLed a False
cmdCtear.Enabled aTrue
cudSave.Enabted a True
Screen.MousePointer = Default

End Sub

Sub cmdSave, Click 0)
Dim SaveHandle As Integer
Dim FitetitLe As String

'Get new FiLeSpec
On Error Resume Next
CN4DiaLogl.DefaultExt z "AGI"
CMoialogl.Ftags a OFN -PATHW.JSTEXIST +OFNHOVERWRITEPROMPT *OFN HIDEREADONLY+

OFN EXTEHSIOND IFFERENT
CHDiatogI.Action a DIG -FILE -SAVE
if Err a 32755 Then 'user selcted cancel button

Exit Sub
End If
on Error GoTo 0

Debug.Print "Save FiLetitLe is + CMDiaLogl.FiletitLe + .

'Test to see if new file is already open or exists
Screen.HousePointer a HourGtass
if CHDiatogl.FitetitLe z f rmrian1C14Diatog1.Fi Letittie Then

AgiVie" lose DB~andle 'Close open Copy
Kill CM~ialogl.Fitename 'Delete Previous open copy
fr~lainmnmuCtosefl.Enabled z False 'Reset menu selection
f rn~ai ni nuVi ewGraph. Enabled = False
frwiain~mnuuViewTabte.Enabted a False
frm~ainmn~uViewOata.Visibte z False
frsr~ainimnmuCal~oehm.Enabied z False
frimlainlenuStatEvat.Enabted a False

Elseif CHDialogl.FiLetitLe z "1THSFILE.AGI"1 Then
Exit Sub 'File update will be automatic upon Cancel Click

Elseif DirS(CHDialogI.Fitename) " "Then 'if File exists
Kill CM0iatogI.Fitename 'Delete unoperw 41 coy

End If

Iopen blank file to copy into
SaveHandle :AgiFreeFileC)
Filetitle 3 OIDialogl.Fitetitle
Agi View~pen Saveffandle, Filetitle, "CAUR"1
if AgiError) -, 0 Then

Nsglox "File Creation Error: + AgiErrorText()
End If

ICopy current file into blank copy for saving
more = AgiViewFirst(Thesismandie)
While more

AgiView~et ThesisHandle, ThesisRDS, ThesisRec
AgiViewAdd SaveHandle, ThesisROS, ThesisRec
if AgiErroro) - 0 Then

NsgBox "Error adding record to save file." *NIC) "File results undetermined."
Agi ViewClose (SaveHandle)
Screen.MousePointer a Default
Exit Sub

End If
more z AgiViewlext(ThesisHandle)

C.65

Wend
AgiViewClose (SaveHandle) 'SampleHandLe is remains open
Scre"n.MousePointer a DefauLt

End Sub

Function FindEOSI (ADOKDSI As DoubLe, MOODKSI As Double, DELKDSI As Double) As Double
'Solution is found by weighting the KDSI values
'These weightings are from the Softcost-R Manual page R-83
'Note the wieghtings for Lines and modules have been added so as to include
,the effect of attering both the line and the module
FindEDSI a .53 * ADfKDSI + (.27 + .24) * DI0(DSi + (.15 + .11) * DELKDSI

End Function

Function FindEXTIME (PerTime As Double) As Double
If PerTime - 650 Then

FindEXTIHE a 1#
Else

FindEXTIME a 1.82 * (PerTime / 1000) " 1.305
End If

End Function

Function FindLearn (SCNUM As Integer) As Double
'This function assumes the reattionship holds true for 6 block changes.
'But SYSCON states relationship holds for 6 years.
'Future may need to adjust for years if block changes are not 1 year
'The exponent comes from SYSCON, Thesis TAble S
If BCNUM - 2 And BCHUN <- 6 Then

'No coefficient => normalize to 1.0
'Note Effect is ratio to previous BC and not the first BC
FindLearn a (BCNUM W (-.375)) / ((BCNUM - 1) (-.375))

Else
FindLearn a 10

End If
End Function

Function FindSTOR (Per1em As Double) As Double
If PerMem - 650 Then

FindSTOR z 10
Else

FindSTOR = 1.94 * (Per!4em / 1000) 1.425
End If

End Function

Sub Form Load 0)
Dim Fitetitte As String
Dim FiLeSpec As String

'Open new file (agi formats only).
ThesisHandle = AgiFreeFiteo)
FitetitLe = "THSFILE.AGI"
AgiView•pen ThesisHandle, Filetitle, "CAUR"
if AgiError() <> 0 Then

MsgBox "File Open Error: " + AgiErrorText()
End If
Tablel.ViewHandte x ThesisHandte

'Enable Appropriate Buttons
more = AgiViewFirst(ThesisHandte)
If more Then

cmdCreate.Enabied = False
Else

cmdCtear.Enabied 2 False
cmdSave.Enabied = False

End If

'Set FiteSpec for Save Dialog Box
If Right(FiLel.Path, 1) > "\- Then

FiLeSpec a Fitel.Path + "\" + Fitetitle
Else

FileSpec a Fitel.Path + Fitetitte
End If
CNDlatogl.FiLename = FiteSpec

End Sub

C.66

Sub Form Unload (Cancet As Integer)
Agivewltose Thesislandle

End Sub

Sub txtKMCNu LostFocus (
Dim BC"M As Integer
8CuML a IntCVaI(txtSCNLm.Text))
I f BCORN1 0 Then

txtlalum.Text a StrSCBCNM)
Else

ErrNsg a "Please select a positve value for" + NL()
Errftsg a Errfsg + "the uvber of records."

a sg~ox Err14sg
txtBCNtm.Text a 010"
txtBCNtmm.Set Focus

End If
End Sub

C.67

Code for ThsGraph Form

Option Explicit

Sub cudCancel Click (
Graphl.Daitaftset z G-Att-Data
Unload frmTh~sGraph

End Sub

Sub cujiorm-Click C
If Norm~tate a Norm Off Then

cmd4orm.Captiori * "Normalize Off"
Norndtate a Norm-On

Else
cmdlorm.Capt ion a "Normalize On"
Norm~tat* = Norm-Off

End If

YPick a Actual Effort
LoadThesisData NormState, YPick

Graphl.Dratdlode a G Draw
If FileGraph a 1 Then

Graphl.Dratdlode x 6 Write
End If

End Sub

Sub cadYAxis Click C
frmYAxis7Show Nodal

LoadThesis~ata NormState, YPick

Graphl.Draw~ode = G-Draw
If FiteGraph a 1 Then

Graphl.Drawlode a 6 Write
End If

End Sub

Sub Form Load 0)
txtDSName.Text = DOFiteSpec

'set fitename for saving graph
Graphl.1mageFile a "thesgrph"

Screen.NousePointer a HourGtass
WindowState a Maximized
NormState = Norm-Off
Graphl.LeftTitte = "MM"
Graphl.BottinTitte z "Block Change Number"
Graphl.Drawlode = G-Draw

YPick a Actual Effort
LoadlhesisData NormState, YPick
Screen.MousePointer aHourGlass

Graphl.Dratdlode = G-Draw
If FileGraph x 1 Then

Graphl.Draw~ode a G Write
End If
If FiLeGraph - 1 Then

Graphi.Dratdlode z G Write
End If
Screen.MousePointer a Default

End Sub

Sub LoadThesisData (Normalize As Integer, YChoice As Integer)
Dim SCCotxnt As Integer

Graphl.Nue~oints =AgiVlewCoutaitDelandle)
Graphl.IndexStyle 1 'Enhanced index style permits access to

'arrays for holding data.

'Set mode characteristics
Graphl.ThisSet = 1

C.68

Graphl.ThisPoint a I

'Array s..becripting
I lzCoim/ ID

* 2 a Navigation Sensors
* 3 a Core Avionics

4 I a Electronic Combat System
5 a Offensive Sensors

more x AgiViewFirst(DBHandLe)
If more Then

AgiVlet~et DS~andLe, ThesisRDS, ThesisRec
Select Case Trim(ThesisRec.Category)

Case "CID"
Graphl.Legendfext z "IC/1D`
Graphl.SyaibotData =G CROSS PLUS
Graphl.ColorData x GBLUE

Case "INAVO"
Graphl.LegendText a "NAVOO
Graphi.Symbot~ata a G CROSS TIMES
Graphl.Cotor~ata = GJREEN

Case "CAV"
GraphI. LegendText z "CORE"
Graphl.Syirbo(Data =G TRIANGLE-UP
Graphl.CotorData = GRED

Case "IECS"I
Graph1. LegendText - "IE CIO
Graphi.SywboLData = G DIAMOND
Graphl.CoLorOata aGJLACK

Case "OFF"
Graphl.LegendText a "OFF"
Graph1.SymboLData xG SQUARE
Graphl.CoLorData Is GJROWN

End Select
End If

'Load the data to the graph
BCCoutmf = 0
more = AgiViewFirst(DBHandte)
Screen.MousePointer a HourGlass,
Do While more

AgiVie" et DUHandle, ThesisRDS, ThesisRec
BCCount a BCCount + 1
Graphl.ThisPoint BCCount
Graphl1.XPos~ata = CCount
If Normalize Then

'Graphl.GraphData = ThesisRec.ACTEFFORT IThesisRec.PI
'Note below use default coefficient and exponent
GraphI. Graphoata = Thesisftec.PI *2.85 *(ThesisRec.ACTKDSI 1.15) * ThesisRec.EDSI

IThesisRec.ACTKDSI)
Else

Select Case YChoice
Case Executable Time

Graphl.Graphbata z ThesisRec.EXTIME
Case Time UtiL

GraphT.Graplioata = Thesi sRec .T IMEUT IL
Case Storage

Graphl.Graphoata = ThesisRec.STOR
Case Hem UtiL

GrapFl.GraphData =ThesisRec.MEMUTIL
Case Pi Mutt

GraFh1.Graph~ata 3ThesisRec.PI
Case Analyst Experience

Graphi .G~raphOatsa ThesisRec.AEXP
Case Lang Experience

GraphlT.GraphData z ThesisRec.LEXP
Case Actual KDSI

Graphi .GraphData Is ThesisRec.ACTKDSI
Case Equjivalent OSI

Graphl.Graphoata = ThesisRec.EDSI
Case Actual Effort

Graphi .graphOata a ThesisRec.ACTEFFORT
End Select

End If
'Debug.Print S~r(Graphl.Graph~ata)

C.69

more = AgiView~iext(DB~andL.)
Loop
Screen.MousePointer aDefou~t

End Sub

C.70

Code for Zocu~ata Form

option Explicit
Dim TempY~ax As Single
Dim TempY~in As Single
Dim TempX~ax As Single
Dim Tinmp(Min As Single

Sub cmdCancei Click ()
Unload frmZoouVata

End Sub

* ~Sub cm"OI Click
Yhax Val(txtYl~ax.Text)
YMin VaL(txtY~in.Text)
M~ax *VaL(txtX~ax.Text)

Mlin =Vat(txtX~in.Text)

Unload frmZooffr~ata
End Sub

Sub cadReset Ctick C
txtYMax.Text a Str(TeflpYMax)
txtYMin.Text z Str(TemipY~in)
txtX~ax.Text = Str(TeflXMax)
txtXl~in.Text = Str(TeflpXMin)

txtYMax. Set Focus
End Sub

Sub Form Load C
txtY~ax.Text =StrCYMax)
txtYMin.Text = Str(YMin)
txtXMax.Text a Str(XMax)
txtX~in.Text = Str(XMin)

TempYMax = Yhax
TeilpYMin = Y~in
TempXl~ax =XMax
TempXMin xXMin

End Sub

C.71

Appendix D

Block Change Process Models

D.1

Table of Contents

Object Oriented Design Models D.3

Data Dictionary D.3

Software Support Object Diagram D. 10

Software Support Data Flow Diagram D. 11

Series Software Support Data Flow Diagram D. 12

Sacramento ALC Block Change Process D. 13

MIL-HDBK-347 Block Change Process D. 14

D.2

Object Oriented Design Models

Data Dictionary

Data Dictionary Entry Fomnat and Definitions

Entity Label := Entity Role: Definition

where
Entity Label is the name of the entity appearing in the

diagram.
":=" is "defined as"
Entity Role is the role the entity plays in the diagram.

Roles are either
Objects, Processes, Attributes, Data, or Relationships.

Definition is the definition of the entity within the context
of the model.

a) Objects are physical or abstract actors that have meaning in
the problem space.
b) Objects are characterized by Attributes and are linked together
by Relationships.
c) Attributes are features of an Object that have meaning in the
problem space and need to be maintained in the model space.
d) Relationships describe how one Object interacts with another.
e) Data is information used or created by a Process.

Approved ECP := Object: Engineering Change Proposal that has been reviewed and
approved by the Configuration Control Board and is to be included in the current
block change cycle

Approves := Relationship: "the CCB approves the ECP"

A vailabilitt := Attribute: describes how much time computer assets owned by the
SSA can be used during the development phase of the current block change cycle

Block Change := Object: all materials produced by the SSA during the block change
process that are released to the field

D.3

CCB := Object: formal group (Configuration Control Board) comprised of User
personnel and SSA personnel responsible for reviewing and approving all changes to
be made to the Product Baseline during the current block change cycle

CCB Process := Process: actions taken by the CCB to review and approve an ECP
for inclusion in the current block change

Change/Problem Regort := Object: standard forms that describe, in terms of
requirements, what needs to be added, deleted, or modified in the Product Baseline

Change Reauests := Data: standard form that describes, in terms of requirements,
what needs to be added, deleted, or modified in the Product Baseline

Code := Object: the executable component of Software

Complexity := Attribute: describes the design/structure of the including the
completeness and readability of the available documentation, readability of the
available code listings, and the degree of coupling and cohesion within the Code
itself

Cost := Attribute: estimate in dollars of the Resources needed to complete the ECP

Data Size := Attribute: size of the database/data st-uctures required by the Code to
perform it's function according to the Requirements

Demonstrates := Relationship: "the Test Plan demonstrates the Block Change (meets
the user's requirements)"

Depot MX : Object: Depot maintenance Manuals for the weapon system

Description : Attribute: the portion of the Change;Problem Report that describes
what is wrong or what needs to be done to the software which forms the requirement
for the next block change cycle

Design Docs := Object: documents (generally delivered with the software) that
describe the software design at various levels of abstraction

Develop Changes := Process: translation by the SSA of the approved ECP into
executable software for Ground Integration Test

Development Paradigm := Attribute: the specific engineering management method
used to plan and track the Develop Changes process

Draft ECP := Data: ECP prior to approval by the CCB

D.4

ECP := Object: collection of one or more Change Problem Reports that have been
approved for inclusion into the Product Baseline during the next block change cycle

Efficiency := Attribute: the average SSA manhours of effort it takes to change a
single line of code measured from the Effort Estimation process to the delivery of a
test tape to the Ground Integration Test process

Equipment := Object: Computer hardware, software, and tool sets owned by the
SSA that can be applied to the current block change cycle

Estimate Effort := Process: comprises investigating, prioritizing, and estimating the
effort required to implement each Problem Report and Change Request waiting to be
implemented in the current block change cycle

Effort Estimate := Data: documented result of the Effort Estimate process

Experience := Attribute: describes SSA programmer and analyst personnel
experience with the software being modified and with the SSA Equipment

Field Change := Process: distributing the Updated Tapes &Manuals to the User

Field MX := Object: current configuration manuals used by the Field MX Personnel

Field MX Personnel := Object: weapon system maintainers that are assigned to the
weapon system's base of operations

Fielded to := Relationship: "the Block Change is fielded to the User"

Fliers := Object: weapon system operators

Flight Crew := Object: current configuration manuals used by Fliers

Flight Failed Tape := Data: Software with major problems that were uncovered
during Flight Test requiring Rework

Flight Problems Not Waivered := Data: Software with minor problems uncovered
during Flight Test that requires Rework

Flight Test := Process: software testing that occurs on one or more test aircraft in
support of development testing or operational testing

Flight Test Equipment := Object: the aircraft to be used during Flight Test

Flight Test Plan := Object: documentation that describes the objectives of the Flight
Test process in terms of Flight Test Procedures, Equipment, and Results

D.5

Flight Test Procedures := Object: documentation describing the mission profiles, and
series of actions to be used during the Flight Test process

Flight Test Results := Object: documentation describing the outcome of the Flight
Test process

FT Schedule := Attribute: description of the availability of Flight Test Equipment

Ground Integration Test := Process: software ground testing done in the avionics
system integration facility or other system mockup

Ground Test Equipment := Object: hardware and facilities used during Ground
Integration Test

Ground Test Plan := Object: documentation describing the objectives of the Ground
Integration Test process in terms of procedures, equipment, and results

Ground Failed TaMe := Data: software with major problems that were uncovered
during Ground Integration Test requiring Rework

GT Speed := Attribute: description of the speed of the host computer used during
Ground Integration Testing

GT Memory := Attribute: description of the amount of unused memory in the host
computer used during Ground Integration Testing

GT Procedures := Object: documentation describing the series of actions to be
accomplished during the Ground Integration Test process

GT Results := Object: documentation describing the outcome of the Ground
Integration Test process

Integrated Waivered Tape := Data: Software with minor problems discovered during
the Ground Inte.-,tion Test process that is being released to the Flight Test process

Integrated Tape :=- Data: Software with no problems discovered during the Ground
Integration Test process that is being released to the Flight Test process

Integration Problems Not Waivered := Data: Software with minor problems
discovered during the Ground Integration Test process that requires Rework

Local Policy := Object: documentation that describes the SSA software Development
Paradigm, and Standards

D.6

Manuals := Object: family of documents describing the weapon system operation and
maintenance practices and procedures

Memor := Attribute: description of the unused portion of the Target Computer RAM
and ROM

Minor Flight Problems := Data: Software with minor problems uncovered during the
Flight Test process

Minor Integration Problems := Data: Software with minor problems uncovered during
the Ground Integration Test process

Operational Tape := Data: current weapon system Software and supporting Manuals

Personnel := Object: people employed by the SSA

Prioritize Board := Process: rank ordering of changes to be made to the Software and
preparation of an ECP for those changes

Priority := Attribute: describes the urgency of the Change/Problem Report

Problem Repons := Data: description of problems or errors in the current Product
Baseline that must be corrected through additions, deletions, or modifications

Procedures := Object: all previous documented test actions dating from development
to the current block change cycle

Produces := Relationship: "the SSA produces the Block Change"

Product Baseline := Object: documentation that describes the configuration of
Software, Manuals, and Tests that exist at the start of a block change cycle

Reliability := Attribute: describes the required reliability of the baseline Software

Reproduce Tape := Process: copy sufficient quantities of Block Change materials to
accomplish the Field Change process

Requirements := Object: documented User needs that the Software must contain

Resides in := Relationship: "the Block Change resides in the Target Computeir"

Resources := Attribute: describes the SSA Equipment, SSA Personnel, Flight Test
Equipment, and Ground Test Equipment needed to accomplish the work described in
the ECP

D.7

Results := Object: documentation describing the outcome of all previous Procedures

Revised Tapes := Object: new Product Baseline Software

Revised Manuals := Object: new Product Baseline Manuals

Rework := Process: activity that corrects problems found during Ground Integration
Test and/or Flight Test

Schedule := Attribute: describes the expected completion dates of major ECP
activities

Size := Attribute: describes the number of lines of code Product Baseline Software
contains

Size Estimate := Attribute: describes the estimated number lines of code that must be
added, deleted, or modified to satisfy the Change/Problem Report

Skill := Attribute: describes the relative abilities of the SSA Personnel working on
the block change

Software := Object: Requirements, Design Docs, and Code

S!peed := Attribute: describes the throughput of the Target Computer

SSA := Object: Software Support Agency, the organization responsible for Software

support

Standards := Object: documentation that describes the SSA's local Software

development policies

Starts From := Relationship: "the Block Change starts from the Product Baseline"

Submits := Relationship: "the User submits a Change/Problem Report"

Target Computer := Object: the computer that resides on the weapon system

Tests := Object: all previous Procedures, Test Code, and Results dating from
development to the current block change cycle

Test A ssets := Attribute: describes what equipment will be required to support the
Develop Changes, Ground Integration Test, and Flight Test processes for a particular
Change/Problem Report

D.8

Test Code := Object: the current configuration of Software created to support the
Develop Changes and Ground Integration Test processes

Test Plan := Object: documentation that describes how, why, where, and when the
Software will be tested

Test Tape := Data: Software containing the changes described in the ECP that has
completed unit testing

Test Schedule := Attribute: describes when all portions of the Test Plan are
scheduled to begin and end
Updated Tapes &Manuals := Data: sufficient quantities of all Block Change materials

necessary for distribution to all weapon system bases of operation

User := Object: weapon system operators and maintainers located at the weapon
system site

Waiver Board := Process: formal organization that reviews minor Software problems
discovered during testing responsible for returning the Software for Rework or
passing it through to the next process and generating a Problem Repoli to be acted
on during the next block change cycle

D.9

Software Support Object Diagram

-Appmes

MP Lker WA
Cad -Produces Effkwwy
Schedule (SCEM
Resources

Fold Mx Perurviel
ftsa-- E*w*= Av&UWY

Subffft AEXP. rum
VE.XP

ChWQr4WPnM*bW"
sm

Report AW . PW Loca Poky

Sin Esends to Af0DP
Tod Assets
Ofter"on TAffld Ciorrouter
Priority Spemd. nAlE Resides in Dridapf"niviRr t Pveftv SteridardsMowry, STOR

Nots: Itelicized words we Bloock Chow I
Dernoristrates

we ircluded in the Starts From Test Sdd,.*COCOL40
attritmul"

old
COCOL40 dshhese. Revised Revised

Marx"
Product Besellrie

TOM
-tI I 4Grourd Tod FW* TogA Plan Plan

SQ&NW@ MW"ft

Size, KDSI Ground Tod Flight Too 1

Relimbility. RELY Pr Procedure.

Oda $izs. OATA -7-1

Cornpiv*' CPLX Ground Tea FWt Test
-F-Fftht ýClew Eaukowlt EguipmertTests 1---.Z -------- J

GT Sp"d. TIME FT Schedule
GT Mowry, VOR
GT VAIRT

P, 'a,"
L if;;iý

Results
Tat Code

Fum D.1 - Object Model

D. 10

Software Support Data Flow Diagram

Problem Reports

-Need Date Estimate Effort /Pniontize, DrfCB
Effort Estimate~ C rc

Chuoge Requess
Appyowd ECP

current one&*e

Chaniges

Rework Test Tape

Test Tape

FligI Proble Tape,
not Waivered If~td Ground

F191 TedIntegration
Problem Reports Test ' Tt a

ProblemsTd o
W aiverTae a bo
Boar ete v Ground Fade/

,/ Integrated Integrabon Tape
Wakveed Tape, Problems

N ~Integration,
Reproduce \-n.'oblsm no-N.ý Rework

To"e K k))WaweJd

update Taps
& M"ral

Problem Reports

Operationsl Tape

Figure D.2 - Functional Model For Single Block Change Cycle

D.11

Series Software Support Data Flow Diagram

Change Request 1 Operational

Problem Report USER Tape

Need Date ;f Need Date

Change Request
Operational Tape &

,'Block •Problem Report e
/1 B lo ck Blo c

(Change (Cag
Proces Problem Report Proce

•\ P ro cess P r c s

N I /1'\ N+1
Software Tests

Current Baseline &
K Manuals

Product
Baseline

Figure D.3 - Functional Model For Block Change Cycle Series

D.12

Sacmmento ALC Block Change Plcess

PROCESS 2 PROCESS 3
ANALYZE ANALYZE

/PROCESS I SYSTEM SOFTWARE/

~ CHANGES

I PROCESS 4
POST DESIGN

DEPLOYMENT SOFTWARE

SPROCESS SOFTWARE N

P JPRODUCE SUPPORT
MODIFICATIONPRCS

PACKAGEPRCS

PROCESS 5\ , t MODIFY i

PROCESS7 PROCESS " SOURCE CODE

INTEGRATION INTEGRATE
TESTING7 SOFTWARE -

Figure D.4 - Sacramento ALC Block Change Process

D.13

MIL-HDBK-347 Block Change Process

Level 1

pivobernVctuer PMS De"wy
ReprtProcess Packgep

Level 2

/ Approved CO system CSCI
ProblemlChange Inta Develop iC _rueg 0eac,

Re~r AJAss Sdtww* Test Version = Tet V 7so

Level 3 Initial Analysis ProdtW U

• , Identi~lled•• v Impact Analysi.
Statusl ~e R*%isew . . / Tech I flpa AnelB

C=) /u, ReoEstTmatg, s -3t cc.
~Chang & ECP

ýk " .d-" ,,h.e ppoved

Support. RpmbCor

Report Reor• -- • __._chw Stau C C Index.

ReotApproved Sau
ih ý Accoun~t

Report
Level 3 Develop Software

Updated Updated

A.ne ý Allocted (Prelim Updated Detailed SOD & STD

/AReqts Con\ig & esg SD Desoin) 4_
Approyed STWUdae Code &

ProbleI/Chal Upde ST-. Upd"•d csu

Decide STW Updat STD es
Release ,STD

csc, Test Report N-ow
Test Vfersion CSC D"s ~ CC ee

Test r"FCorft & Upd ICu,~
No Da SCSD & Test Updated

ConfigCSU SO~s

Figure D.5a - MIL-HDBK-347 Block Change Process

D. 14

MIL-HDBK-347 Process

Level 3 System Integrate & Test

CSCI Imrv a yse a lacTest Version Integrate Vin CCB to

System Test Results
Tested

(Flight Version I.. PCA
Test l r&

TWAst Adlosut FCA

"Result Audit Results

Operational diu
SCN Drdt

Version scN

Level 3 Product Logistics

op a,.utioaid D oelovey Vewiy v i,. Build
Vesin Delivery, MdI ~ s Delivery

ff wdl //r-Moel-7 mode Package

Manuals >Q Produce
Manuals Delivery

S- Packages

Schedul

/A
.,- Devery Pack Tram & Publications. Schedule. & , ,

Do~erDePaceages

Figure D.5b - MIL-HDBK-347 Block Change Process

D.15

Appendix E

Memory and Throughput Relationship Derivation

E.1

This derivation was performed on MathCad, version 4.0

Start with the SYSCON equations from SYSCON Report (pg 41) or Table 2.3.
Note these equations can be calibrated separately from the coefficient and exponent if given the

proper historical data. Find:

% Timina Fill result of averaging Design & Development Coefficients and Exponents

Coeff =1.82+ 1.8 Coeff= 1.82 Exp = 1.30-1.31 Exp= 1.305
2 2

TimeEffec(X) =Coeff.X xp N =20 i 0..N Uti- NI

- I I I I I I I I I [
NJ

1.75 -

1.5 -

TimeEffect (Util.) L.25
-- I

0175

0.5

025
0 I I

0 0.1 0.2 0.3 04 0.5 0.6 07 08 09

UtIl.

% Memory Fill, result of averaging Design & Development Coefficients and Exponents

:2.00± 1.88 1.4Ep 1.50± 1.35
Coeff = Coeff 1= 94 Exp - 13 Exp= 1.425

2 2

MemEffect(X) =CoefT.XExP N =20 i =0..N Utit =i

'N

2

1,75 -/

I 5

MemEfft (Util.) I

-- I

0.75

05

0125
0o I I I I I

0 0.1 0.2 0.3 0.4 05 0.6 07 0.8 0.9

Util i

Maximum total contribution is

TimeEffec(I) = 1.82 MemEffect(1) = 1.94 TimeEffec()MemEffect() = 3.531

TimeEffec%(.95) = 1.702 MemEffect(.95) = 1.803 TimeEffect(.95)-MemEffect(.95) = 3.069

E.2

Learnina Effect Table 2.5, is the result of averaging the Design & Development Coefficients and
Exponents from the SYSCON relationship

1.64 ÷s 1.65 -.3754--.374
Coeff - Coeff = 1.645 Exp - Exp -0.375

2 2

LeamElffieck X) - Cof.~p N =6 i =I.. N Year. =iCoeff

0.925

0.5 -

LcaniEffr• =y,.) 0.775

-- 0.7

0.625 -

0.55 -

0.475

0.4
2 3 4 5 6

Year.

E.3

Appendix F

Database Contents

F.1

Cn'mpl Database

Paft A
ido"Rov - P I I I F!! 5 W! 11 "IQ ale A "As a- a X Va I G! $42 31,12 11-1

v C.

14 8 n o wo".001
0

it 1 .16; P. 1
51

GONGav :2 It N
e 19 32 2! as .30

d 4 -0 in C4 ý+4 @*I m 10 cqý

MOUOV 9 831 9111% iggg CC,!-- A 082

8: .0 1 0 R to a A 10 a 10 00,
8 g spl Q R's it 21 A :8

AdOMI

Id .0
-ma MAR

40911014 RIM R 1 '1010 F 2.1 1ý111IMI ý:21

-c- 0 0 0. 0 6 6 1 .0 0 0 0
030S

ME 9-00
cs 0

1001iffif-W "W7 M: 104 3 80-0- - 0-.0 0.ý C: 1;2111, R '11.4 11;ý
d001104ý8 axilgeninsigggigif R

q 43ý q A & 10 S! RM 3S.
6 .2 c cs m _; 0 0 a a 0

d)(31 MARI 209"M=8 = I a. 9 1 ! I :i R cm C4 -7
ci cc d d 0 _m 0 0 - - - - - - - -

03A C4

ci d 0
A C-4

dWOd
R 2

d-C d

dX3V '0 MR all mo 9
z 'I E - ! - m

o o

dVOV
C-3 9F. ;1; 28

NON !2
An g ZORM if

C, 0 7 -7
0 -

JBILA
0 -0 1 1 A I g I i i 5C, 6 46 6 .1:0!_ C) -0

a0is 94 1R

lumm
is mý Ell

cm, -0

MIX,

itmk%
RES: :42 Q! M 9 S

-16 ci

did 164 dd dj- 0
WON INUM

43ý 100%
0 a 0 C C- 16 rý -10 a cc

A13a

4-
0

AaOeuvo

(3 1000000000 ri 0 0 (3 MM M OMM M Z
!212 21-p - !2 m V!2 n -j=j10j!!lýl'OjRj1O M22 R

F.2

Conposite Database

Part B

rig 101 1C. S'O a a ýOw 4.0_4N ý111113 1 - -0,6 x
;ell

4 Q 0 0 0 4ý 0 Oi PR 0 m

1% 11:9

Ilk I I iplie I Mw:: 19104
_0 d 110 01111 col a 10 0 6

I-N
0.0

,2
.0 :2 1 ý;z v A

1111A 112Oh Z.OM 10
.4 .0 vi'd 16 N q .0 a- .0.0 1w a, 0 n 0 v a N

AN

43,11 ý,211ft v V14 6 0 o 0 6 6 a -W .1 C. a _w M 0 , .000 V 0 0 C. vi 4 -1-10 0 0 m

n2linovAmm q 10 IN 49:92 r.=AAQ1 :2"Q:8:2

gin It 1411i 111 1110

AdO&N3 I I 1111 Ill I I I I Ill 1111111111 Ill I 111!11,111 11-11
- - - - - - - - - - - - - - - - -

IMP
0. P. :2 3

iRmAlilgliIN " I pl!q i ?1;1!

00-000-0

(330S Q m a %ýj = Mý A
q ;8

0 o 0 0 d

10018
ml Mo omog 3.0 _oooo--occ--- .ooc)-QQOo did

Coomo 0doo", glili ilol-
0 0-0-000-06 0

d i3_1
42 Ncc 0 d do d d a do-0 11,119 P I Ili, 1 _m

dX3A a A R m !?
a nz I fig 1 1

M.; C..; C3 C3 coo 0 0 0- 0.-

dVOd
o aid.'NIM IMP2 m I . 1 0.C3, 0 0 oc .;odco__coQQc

dX3V :3
C, It all 1 00
co _;do 000--o--doo- 0 0

dWOV cc a
E-01

o 5010- 0 olcjý! 0 _C4 0 0 o 0 - 0 a 0

NaM 0 g -0

0 8 g a 10;2 to f 5
a 16 d. co o o o o -0-0- -0-11 RIM Iý I Pill

MA n

0 0.7- do
0 cc-- _ooZ__oQ0 d 0 6 d d 91! RIMER I

WIS
;!7

IMIR! 1 IRI,2R:: 1 1-

S. 1; R FIR "Jill '01,

3VW3 -0
1:8 1

1UA3M 00, V0.0PONE: i S 2 4 a 9 :3 0 SIR a M, 0", 11111R 9 a a q a sit 9 OMNI
XIdO

old d d o 0.6-0 0 0 0 - 0 - 0 o

0

c

8

1:: 9 .. U ,
0 - - - - o 0 0 0 0

A135 .0
0,11 A q- ý115 I I a- c p 9 P 8

-U 7 c-00 6--d-
d 0 0 o IIIV, 6 Me

AWOUVO ý M S-6<m g81
u u (JOU 2

I" o a C; 0 V %a C4

F.3

Composite Database

Navigation & Core Avionics Categories

a ARE A
Cj

I I!P I 1 1141,1191,01 C4 91,111,111 1 4

C4 a 5ý 1 %a a-

1 9.01! Rill ei .6 '0 0 w -Jill =.d ýO 0 w

d .0 ;-lidl9cild 1- 011! C, 01

-OV Vi 0 40b 40 Id C4, .610 'd ij'Ojkpwd k .6 wo od -0 - ý610

-6 01- 0 N - 0 AMPROR"I.-M! 0 0 0 a 0 IM03 .41.0,04 4411 .0 W11 0

A n, A

SMIN, a- I -V I 10 1111

% :9 & 2 9 2 -14, h A M '0 0

AdOWN3

M_ M

Idli :2

V '2I I 1 20 a I x1f
14 M
!21:14

.115 0 i I - 1 0 Oi
0 0 0

030S G!
5M I'll M ý 111' ý:I§G': S - OV

0- O=w 0001!

Ra ips
OC-,!_w--O-Od_ ado q 1,6-0-000

dW"
III I alp"

Oc'O acj_ýdoc 0 cd 010

dX31 :8 ;2 9
J@ 11gli

1111 SIM _;I 0,11 Al ýl 0 1 1! !2

dX3A a RA
4 -0_0_ý_ 9 d _ý I _;MY - d 1-11 111 -1 10,

"Od

-00 1. M 10 a 0

ýffjq _! a ý , a,

- 2 (j a CIO 0

dVOV
I Ely 1111- p

0 NO Cc$ - dj 01-

Nwani p A -millW * 1111i ;Jill I0 - 9
12 -0

ililill i ý15 81,10 11

aols st = R! -R % ý i Z--- -------- 00011 FIR A
IUM394

R Eli 014 1 x's 8 R V,
MUM -0 V M

a zl

MP 2 9 41:1119 429%9
A I

a . .8 2
0 d 01- 0 0 10 0 d 0 C$ 0 CJ

0SW a ago 16
a-

Old - ý,d a d - d

A13a

a Cds 03 0 C $ Cd$

I
V4nN3Q LO C4Cýi 2 R!2

FA

series Database

5% Growth

12 ,--

6

11-0 I

A8O~a

OU(JU UQUO UUOU Q elm

F.5$ $

Daftbase

6% Growth

p 2.492 -----aI NOR

ONE

nl .2 Ing 2
OGONKGCV 82

Ell

I JNIJ CH

.3 11 RM i

101,4 !M Nq R' -I

N-5-A-M-M
030S g g FOR

0 d cl clioldle .0 d 0 cd 022010

1110,1111 11
, I I

daOn I
d d d Csid d

cd

dX3A

"Od

1101- 1 ORION i i illcificil

M
cd Cos d o'lc'slc'jlc*jl: 0 d

go ;J; ftf
":)v # ;4;1:1; 1 1 11111

d CS 0 0

NUM -
-Mg

; if

ams
5: 111

,; - MIUM
,Wn3n I I I

89i IS 1110 IN$ 9 419 9 19
*WM

I

A136 R! f.4 P!
Bass as laizaasas

AdO*UVO

2.9C4
RnWIS,

F.6

Biblioahy

1. Babel, Philip S. Class handout, Colloquium, Systems Software
Management. School of Systems and Logistics, Air Force Institute of
Technology, Wright-Patterson AFB OH, 11 May 1993.

2. Banker, Rajiv D., Srikant M Datar, and Chris F. Kemerer. "A Model
to Evaluate Variables Impacting the Productivity of Software
Maintenance Projects," Management Science, 37: 1 - 18 (1 January
1991).

3. Barber, Brent L. Investigative Search of Quality Historical Software
Support Cost Data and Software Support Cost-Related Data. MS
thesis, AFIT/GSS/LSY/91D-1. School of Systems and Logistics, Air
Force Institute of Technology (AU), Wright-Patterson AFB OH,
December 1991 (AD-A246659).

4. Barrow, Dean, Susan Nilson, and Dawn Timberlake. Software
Estimation Technology Report, Hill AFB UT: Software Technology
Center (STSC), March 1993.

5. Boehm, Barry W. Software Engineering Economics, Englewood Cliffs
NJ: Prentice-Hall, Inc., 1981.

6. Boulware, Gary W., Belinda J. Nethery, and Bryan D. Turner.
"Maintenance Software Model Assumptions Versus Budgeting
Realities," National Estimator, Spring: 13 - 25 (1991).

7. Bourque, Pierre and Vianney C6t6. "An Experiment in Software Sizing
with Structured Analysis Metrics," Journal of Systems and Software,
15 No2: 159 - 172 (May 1991).

8. Brooks, Frederick P., Jr. The Mythical Man Month, Reading MA:
Addison-Wesley, 1982.

9. Cioch, Frank A. "Measuring Software Misinterpretation," Journal of
Systems Software, 14: 85 - 95 (February 1991).

10. Compton, B. Terry and Carol Withrow. "Prediction and Control of Ada
Software Defects," Journal of Systems and Software, 12 No3: 199 - 207
(July 1990).

BIB. 1

11. Corbi, T. A. "Program Understanding: Challenge for the 1990s," IBM
Systems Journal, 28 No2: 294 - 305 (1989).

12. Defense Systems Management College. Mission Critical Computer
Resources Management Guide. Washington: GPO, 22 May 1990
(AD-A264652).

13. Department of Defense. Defense System Software Development.
DOD-STD-2167A. Washington: GPO, 29 February 1988.

14. Department of Defense. Mission-Critical Computer Resources
Software Support. MIL-HDBK-347. Washington: GPO, 22 May 1990.

15. Devore, Jay L. Probability and Statistics for Engineering and the
Sciences. Pacific Grove CA: Brooks/Cole Publishing Company, 1991.

16. Eddins-Earles, Mary. C3I Software Cost Estimation Model
Development, Final Technical Report, October 1984 - May 1987.
Contract F360602-84-C-0154. Griffis AFB: Rome Air Development
Center, September 1987 (AD-B120 201).

17. Enhanced REVIC Advisor (ENREV). Version 2.01 , IBM, 258k, disk.
Computer Software and manual. Keith Ernst, 1991.

18. Fenton, N. E. Software Metrics: A Rigorous Approach. London:
Chapman & Hall, 1991.

19. Ferens, Daniel V. "Evaluation of Eight Software Support Cost
Models," National Estimator, Spring: 3 - 12 (1991).

20. Ferens, Daniel V. "New Perspectives in Software Logistics Support,"
Logistics Spectrum, 26: 4 - 8 (Spring 1992).

21. Ferens, Daniel V. "Software Cost Models: Quo Vadis," Journal of
Parametrics, 4 No4: 64 - 79 (December 1984).

22. Fried, Louis. "Team Size and Productivity in Systems Development,"
Journal of Information Systems Management, 8 No3: 27 - 35 (1991).

23. Glass, Robert L. and Ronald A Noiseux. Software Maintenance
Guidebook. Englewood Cliffs NJ: Prentice-Hall, 1981

BIB.2

24. Greve, Alan R. and others. The REVIC Advisor (REVAD): An Expert
System Preprocessor to a Parametric Software Cost Estimating Model.
Alexandria VA: DOD Defense Logistics Agency, September 1991
(AD-A242707).

25. Gulezian, Ronald. "Reformulating and Calibrating COCOMO," Journal
of Systems and Software, 16 No3: 235 - 242 (November 1991).

26. Hager, James A. "Software Cost Reduction Methods in Practice,"
IEEE Transactions on Software Engineering, 15 Nol2: 1638 - 1644
(December 1989).

27. Henry, Sallie and Calvin Selig. "Predicting Source-Code Complexity at
the Design Stage," IEEE Software, 7: 36 - 44 (March 1990).

28. Kane, Patrick T., Donald J. Reifer, and Douglas Willens. SoftCost-R,
Software Version 8.0, Manual Revision - October 1989. Torrance CA:
Reifer Consultants. Inc., 1989.

29. Kankey, Roland D. "An Overview of Software Maintenance Costing,
National Estimator, Spring: 40 - 47 (1991).

30. Lederer, Albert L. and Jayesh Prasad. "Nine Management Guidelines
for Better Cost Estimating," Communications of the ACM, 35 No2: 51
- 59 (February 1992).

31. Lederer, Albert L. and Jayesh Prasad. "The Validation of a Political
Model of Information Systems Development Cost Estimating,"
Computer Personnel, 13 No2: 47 - 57 (July 1991).

32. Lehner, Franz. "Cost Comparison for the Development and
Maintenance of Applications in 3 rd and 4th Generation Languages,"
Information & Management, 18 No3: 131- 141 (March 1990).

33. Low, Graham C. and D. Ross Jeffery. "Function Points in the
Estimation and Evaluation of the Software Process," IEEE
Transactions on Software Engineering, 16 Nol: 64 - 71 (January 1990).

34. Mukhopadhyay, Tridas, Michael J. Prietula, and Steven S. Vicinaza.
"Examining the Feasibility of a Cased-Based Reasoning Model for
Software Effort Estimation," MIS Quarterly, 16 No2 : 155 - 171 (June
1992).

BIB.3

35. NeSmith, Robert E II. A Study of Maintenance Costs of Air Force
Large Scale Computer Systems. MS thesis, AFIT/GSM/LSM/86S- 15.
School of Systems and Logistics, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, September 1986 (AD-A174454).

36. Neter, John and others. Applied Linear Regression Models. Boston
MA: Irwin, 1989.

37. Oman, Paul and Jack Hagemeister. "Metrics for Assessing a Software
System's Maintainability," Proceedings of Conference on Software
Maintenance. 337 - 344. Washington DC: IEEE Computer Society
Press, 1992.

38. Ourada, Gerald L. Software Cost Estimating Models: A Calibratiopt,
Validation, and Comparison. MS Thesis, AFIT/GSS/LSY/91D-11.
School of Systems and Logistics, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, December 1991 (AD-A246677).

39. Page-Jones, Melir. Structured Systems Design, Englewood Cliffs NJ:
Prentice-Hall, Inc., 1988.

40. Penedo, Maria H. and Christine Shu. "Acquiring Experience With the
Modelling and Implementation of the Project Life-Cycle Process: The
PMDB Work," Software Engineering Journal, 6 No5: 259 - 274
(September 1991).

41. Price, Gordon, Bryce Ragland, and Gregory Daich. Source Code Static
Analysis Technologies Report, Vol I, Hill AFB UT: Software Technology
Support Center (STSC), March 1993.

42. Price, Gordon, Bryce Ragland, and Gregory Daich. Source Code Static
Analysis Technologies Report, Vol II, Hill AFB UT: Software
Technology Support Center (STSC), March 1993.

43. Rehg, Virgil. "What Should Cost Estimators Know about TQM?"
National Estimator, Spring: 32 - 39 (1991).

44. Reifer, Donald J. "Asset-R: A Function Point Sizing Tool for Scientific
and Real-Time Systems," Journal of Systems and Software, 11 No3:
159 - 171 (March 1990).

45. Revised Intermediate COCOMO (REVIC). Version 9.0, IBM, 244k,
disk. Computer Software and Manual. Raymond L. Kile, 6 April 1992.

BIB.4

46. Robson, D. J., and others. "Approaches to Program Comprehension,"
Journal of Systems and Software, 14: 79 - 84 (February 1991).

47. Rubey, Raymond J. Software Management Guide, Hill AFB UT:
Software Technology Support Center (STSC), April 1992.

48. Rumbaugh, James and others. Object-Oriented Modeling and Design.
Englewood Cliffs NJ: Prentice Hall, 1991.

49. Schwartz, Evan I. "Turning Software from a Black Art into a Science,"
Business Week, Special Issue: 80 - 81 (July 1992).

50. Silver, Aaron N. and Joseph D. Suhr. Technical Report Software Cost
Estimation Study, CER Model Baseline Report. Contract N00014-85-
C-0892. Denver CO: Martin Marietta Denver Aerospace Corporation.
September 1987 (AD-B116 049).

51. Silver, Aaron N. and others. SASET User's Guide (Multiple CPCI
Enhancement) Software Architecture, Sizing, and Estimating Tool.
Contract N00014-85-C-0892. Denver CO: Martin Marietta Denver
Aerospace Corporation, February 1990.

52. Sittenauer, Chris and Mike Olsen. "Time to Re-engineer?" Crosstalk,
No32: 7 - 10 (March 1992).

53. Stewart, Rodney D. and Richard M. Wyskida. Cost Estimator's
Reference Manual, John Wiley & Sons, 1987.

54. Symons, Charles R. Software Sizing and Estimating Mk II FPA
(Function Point Analysis). West Sussex England: John Wiley & Sons
Ltd., 1991.

55. SYSCON Corporation. Avionics Software Support Cost Model: Final
Report, Vol I, September 1980 - November 1982. Contract F33515-80-
C-1157. Washington DC: SYSCON Corporation, 1 February 1983
(AD-A128523).

56. System Evaluation and Estimation of Resources (SEER). Version 3.0,
IBM, 603k, disk. Computer Software and Manual. Marina del Rey CA:
Galorath Associates, Inc., 15 March 1991.

57. Talbot, John and others. Post Deployment Software Support Process.
Report from Sacramento Air Logistics Center Process Action Team.
McClellan AFB CA: Sacramento ALC, 31 October 1990.

BIB.5

58. Thibodeau, Robert. An Evaluation of Software Cost Estimating
Models. Contract F30602-79-C-02244. Huntsville AL: General
Research Corporation, 10 April 1981 (AD-A104226).

59. Torn, Aimo A. "Models of Software Accumulation," Journal of
Systems and Software, 12 Nol: 39 - 42 (April 1990).

60. van Genuchten, Michiel J. I. M. and Hans J. A. H. M. Koolen.
"Applications on the Use of Software Cost Models," Information &
Management, 21 Nol: 37 - 44 (August 1991).

61. Waina, R. B. and others. Predictive Software Cost Model Study: Final
Technical Report, Vol I, 2 April 1979 - 2 June 1980. Contract F33615-
79-C-1734. Canoga Park CA: Hughes Aircraft Company, June 1980
(AD-A088476).

62. Waina, R. B. and others. Predictive Software Cost Model Study: Final
Technical Report, Vol II, 2 April 1979 - 2 June 1980. Contract F33615-
79-C-1734. Canoga Park CA: Hughes Aircraft Company, June 1980
(AD-A088477).

63. Yuen, Chong Hok. "A Statistical Rationale for Evolution Dynamics
Concepts," IEEE Conference on Software Maintenance - 1987. 156-
164. Washington DC: Computer Society Press of the IEEE, 1987.

BIB.6

Vita

Captain Ronald L. Warner, Jr., was born on 2 May 1960 in Okinawa

9 Japan. He graduated from Whitesboro Senior High School in 1978 and

attended the U.S. Air Force Academy, graduating in 1982 with a Bachelor

of Science in Electrical Engineering with Academic Honors and

Distinction. Upon graduation, he received a regular commission in the

USAF and attended Undergraduate Pilot Training (UPT) at Williams AFB,

Arizona. His subsequent flying assignment, Castle AFB, California,

included duties as a copilot and aircraft commander for the 924th Air

Refueling Squadron. His next assignment, at Wright-Patterson AFB,

Ohio, encompassed flying as a dual-qualified instructor research pilot in

the NKC-135 and the NT-39 for the 4950th Test Wing. During this tour,

he was selected as the deputy test program manger for Tanker conversion,

a KC-135 aircraft modification project that provided a calibrated water

spray for airborne icing tests. He also supported several te6. missions

world-wide including the shuttle launch of the Magellan space vehicle and

obtained a Master of Science Degree in Aerospace Engineering from the

University of Dayton. Captain Warner departed the Test Wing in April

1992 to attend the Air Force Institute of Technology's graduate program in

Systems Software Management.

Permanent Address: 8901 Gardengate Dr.
Huber Heights OH 45424

VITA. 1

Vita

Captain Darrell L. Wright was born on 1 March 1961 in Cheyenne

Wyoming. He graduated form East High School in Cheyenne in 1979. He g

received an Air Force ROTC scholarship and attended Nebraska Wesleyan

University, Lincoln, Nebraska, graduating with a Bachelor of Science in

Physics (With Emphasis in Computer Technology) in June 1983. Upon

graduation, he was commissioned as a reserve officer and began active

duty service at the Air Force Geophysics Laboratory, Hanscom AFB,

Massachusetts. He was a program control officer and deputy program

manager for the Missile Surveillance Technology (MST) program and later,

the Cryogenic Infrared Radiance Instrumentation for Shuttle (CIRRIS- 1A)

program. He also served as the Lab's cost estimation focal point. He

transferred to Wright-Patterson AFB in October 1987 and served as

Technology Integration Manager for the Integrated Electronic Warfare

System (INEWS) program and later, the SEEK SPARTAN program. He

was reassigned to the F- 16 System Program Office at Wright-Patterson in

1991 where he was the Avionics Integration Manager for several F- 16
a

avionics systems and for the procurement of F- 16- unique pilot training

materials and equipment. He entered the School of Systems and Logistics,

Air Force Institute of Technology, in May 1992.

Permanent Address: 2164 Knoll Dr
Beavercreek OH 45431

VITA.2

I Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

P~joi,c reorung' ouiraen c thi's cilection if nfo.rdr ina~ s t sjihtel to s~et4ge *IU "Dr C ' socirse rici.diw- the t.-'e tor ro~~-i r~t',-tCj' ear , -~ st."g9 cita sources,
gathering an~d rmarntaono ng the cata nleeded. and cornoaettnin c rod re..r'qin t'e* - ilecion of infrmation Sena (omments r .rang ti iron~ L~io _-rn., iri, ;tF'ft a ect of uii.6
coiie•tion .t information. nurucin suggestfonto tor reducimq nghis ouren I0 hashli rnqton HeacicarTer. serices, reorate f- nt-mation Ooerutlons And W orMs. 1215 eefienon
Davis HiCJP'av. Suite 1204 aoington. j a 22202-4302. and to the Ottie)t Managiement •nd tuaqet. Pipeercrk Recumot Pr•,,.t t67C4-0188). A•-sn~nriton _-C ;0Sr3

1. AGENCY USE ONLY (Leave blank) I2. REPORT DATE I3. REPORT TYPE AND DATES COVERED
December 1993 Master's Thesis

4. TITLE AND SUBTITLE S. FUNDING NUMBERS
DEMONSTRATION OF IMPROVED SOFTWARE SUPPORT
LABOR ESTIMATION FOR AIR FORCE OPERATIONAL FLIGHT

I PROGRAMS THROUGH FUNCTIONAL ORIENTATION
6. AUTHOR(S)

Ronald L. Warner Jr., Captain, USAF
Darrell L.Wright, Captain USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology AFIT/GSS/LAS/93D-7
Wright-Patterson AFB OH 45433-6583

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 1 0 . SPONSORING, MONITORING
N e.AGENCY REPORT NUMBER

None.

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/ AVAILABILITY STATEMENT i12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)

This study demonstrated two approaches to improve current software support effort estimation models
or aircraft softwvare. Both approaches involved a functional orientation not used by existing models. The

first approach demonstrated how to orient a model to reflect the block change cycle modification process and
how to represent support effort changes over time in order to improve effort estimation accuracy. Current
software models do not reflect the support environment or the temporal characteristics of aircraft software

* support. The second approach demonstrated how to calibrate a model by properly selecting source data in
order to increase accuracy. Support calibration is not addressed by current models. A literature search
affirmed the validity of both approaches and the methodology. In addition, a standard description of the block
change cycle was developed and validated. A prototype estimation model was derived from the COCOMO
model and included a unique support calibration. Data was obtained from Air Force Software Support Centers
but was unusable, so data was generated from the prototype for the demonstration. A method that was
developed to compare the prototype with current models demonstrated that the prototype is an acceptable
model.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Software Life Cycle Cost, Software Cost Estimation, Software Support. 251
COCOMO, REVIC, SASET, Cost Models. Software Maintenance 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT U
OF REPORT I OF THIS PAGE I OF ABSTRACT

Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)

P-s'scrobed bV ANSI Std Z39.18
"IS114''2

AFIT Control NumberAFIT/C.SS/LAS/93D-7

AFIT RESEARCH ASSESSMENT

SThe purpose of this questionnaire is to determine the potential for current and future applications

of AFIT thesis research. Please return completed questionnaires to: DEPARTMENT OF THE

AIR FORCE. AIR FORCE INSTITUTE OF TECHNOLOGY/LAC, 2950 P STREET, WRIGHT

PATTERSON AFB OH 45433-7765

1. Did this research contribute to a current research project?

a. Yes b. No

2. Do you believe this research topic is significant enough that it would have been rescarchcd (or
contracted) by your organization or another agency if AFIT had not researched it?

a. Yes b. No

3. The benefits of AFIT research can often be expressed by the equivalent value that your agency
received by virtue of AFIT performing the research. Please estimate what this research would
have cost in terms of manpower and/or dollars if it had been accomplished under contract or if it
had been done in-house.

Man Years $

4. Often it is not possible to attach equivalent dollar values to research, although the results of
the research may, in fact, be important. Whether or not you were able to establish an equivalcnt
value for this research (3, above) what is your estimate of its significance?

* a. Highly b. Significant c. Slightly d. Of No
Significant Significant Significance

5. Comments

Name and Grade Organization

Position or Title Address

I

DEPARTMENT OF THE AIR FORCE
AFIT/LAC Bldg 641 NO POSTAGE
2950 P St NECESSARY
45433-7765 IF MAILED

IN THE

OFFICIAL BUSINESS UNITED STATES

FIRST CLASS MAIL PERMIT NO. 1006 DATO OH

POSTAGE WILL BE PAID BY U.S. ADDRESSEE

Wright-Patterson Air Force Base

AFIT/LAC Bldg 641
2950 P St
Wright-Patterson AFB OH 45433-9905

hl~,IaaI,hhh gIhug,I,IhI,,ihhlIh ,,,,Irnm ,hiIasnI

--_ . _,.. a

